首页 磁力链接怎么用

GetFreeCourses.Me-Udemy-Complete Machine Learning and Data Science Zero to Mastery

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-10-14 18:10 2025-1-19 23:01 223 13.24 GB 219
二维码链接
GetFreeCourses.Me-Udemy-Complete Machine Learning and Data Science Zero to Mastery的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Course Outline.mp440.73MB
  2. 1. Introduction/4. Your First Day.mp48.24MB
  3. 11. Milestone Project 1 Supervised Learning (Binary Classification)/1. Section Overview.mp410.19MB
  4. 11. Milestone Project 1 Supervised Learning (Binary Classification)/10. Preparing Our Data For Machine Learning.mp472.6MB
  5. 11. Milestone Project 1 Supervised Learning (Binary Classification)/11. Choosing The Right Models.mp496.42MB
  6. 11. Milestone Project 1 Supervised Learning (Binary Classification)/12. Experimenting With Machine Learning Models.mp455.35MB
  7. 11. Milestone Project 1 Supervised Learning (Binary Classification)/13. TuningImproving Our Model.mp4102.78MB
  8. 11. Milestone Project 1 Supervised Learning (Binary Classification)/14. Tuning Hyperparameters.mp4108MB
  9. 11. Milestone Project 1 Supervised Learning (Binary Classification)/15. Tuning Hyperparameters 2.mp4104.12MB
  10. 11. Milestone Project 1 Supervised Learning (Binary Classification)/16. Tuning Hyperparameters 3.mp463.01MB
  11. 11. Milestone Project 1 Supervised Learning (Binary Classification)/17. Evaluating Our Model.mp471.6MB
  12. 11. Milestone Project 1 Supervised Learning (Binary Classification)/18. Evaluating Our Model 2.mp441.53MB
  13. 11. Milestone Project 1 Supervised Learning (Binary Classification)/19. Evaluating Our Model 3.mp464.84MB
  14. 11. Milestone Project 1 Supervised Learning (Binary Classification)/2. Project Overview.mp434.44MB
  15. 11. Milestone Project 1 Supervised Learning (Binary Classification)/20. Finding The Most Important Features.mp4127.49MB
  16. 11. Milestone Project 1 Supervised Learning (Binary Classification)/21. Reviewing The Project.mp486.14MB
  17. 11. Milestone Project 1 Supervised Learning (Binary Classification)/3. Project Environment Setup.mp4100.76MB
  18. 11. Milestone Project 1 Supervised Learning (Binary Classification)/4. Step 1~4 Framework Setup.mp4105.5MB
  19. 11. Milestone Project 1 Supervised Learning (Binary Classification)/5. Getting Our Tools Ready.mp479.36MB
  20. 11. Milestone Project 1 Supervised Learning (Binary Classification)/6. Exploring Our Data.mp466.88MB
  21. 11. Milestone Project 1 Supervised Learning (Binary Classification)/7. Finding Patterns.mp463.34MB
  22. 11. Milestone Project 1 Supervised Learning (Binary Classification)/8. Finding Patterns 2.mp499.92MB
  23. 11. Milestone Project 1 Supervised Learning (Binary Classification)/9. Finding Patterns 3.mp4137.86MB
  24. 12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.mp48.95MB
  25. 12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.mp466.91MB
  26. 12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.mp455.52MB
  27. 12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.mp482.68MB
  28. 12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.mp4103.34MB
  29. 12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.mp493.47MB
  30. 12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.mp485.83MB
  31. 12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.mp479.29MB
  32. 12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.mp4139.3MB
  33. 12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.mp479.21MB
  34. 12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.mp4142.3MB
  35. 12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.mp432.94MB
  36. 12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.mp4101.27MB
  37. 12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.mp485.69MB
  38. 12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.mp4137.81MB
  39. 12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.mp452.04MB
  40. 12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.mp4159.14MB
  41. 12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.mp4146.17MB
  42. 12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.mp4106.34MB
  43. 13. Data Engineering/1. Data Engineering Introduction.mp413.5MB
  44. 13. Data Engineering/11. Hadoop, HDFS and MapReduce.mp410.11MB
  45. 13. Data Engineering/12. Apache Spark and Apache Flink.mp45.76MB
  46. 13. Data Engineering/13. Kafka and Stream Processing.mp419.25MB
  47. 13. Data Engineering/2. What Is Data.mp442.22MB
  48. 13. Data Engineering/3. What Is A Data Engineer.mp415.16MB
  49. 13. Data Engineering/4. What Is A Data Engineer 2.mp424.24MB
  50. 13. Data Engineering/5. What Is A Data Engineer 3.mp424.29MB
  51. 13. Data Engineering/6. What Is A Data Engineer 4.mp414.93MB
  52. 13. Data Engineering/7. Types Of Databases.mp432.55MB
  53. 13. Data Engineering/9. Optional OLTP Databases.mp479.68MB
  54. 17. Career Advice + Extra Bits/10. CWD Git + Github 2.mp4118.35MB
  55. 17. Career Advice + Extra Bits/11. Contributing To Open Source.mp4130.25MB
  56. 17. Career Advice + Extra Bits/12. Contributing To Open Source 2.mp4113.05MB
  57. 17. Career Advice + Extra Bits/3. What If I Don_t Have Enough Experience.mp4160.95MB
  58. 17. Career Advice + Extra Bits/6. JTS Learn to Learn.mp411.14MB
  59. 17. Career Advice + Extra Bits/7. JTS Start With Why.mp415.43MB
  60. 17. Career Advice + Extra Bits/9. CWD Git + Github.mp4176.11MB
  61. 18. Learn Python/1. What Is A Programming Language.mp4104.77MB
  62. 18. Learn Python/10. Numbers.mp472.71MB
  63. 18. Learn Python/11. Math Functions.mp441.82MB
  64. 18. Learn Python/12. DEVELOPER FUNDAMENTALS I.mp459.71MB
  65. 18. Learn Python/13. Operator Precedence.mp414.43MB
  66. 18. Learn Python/15. Optional bin() and complex.mp421.9MB
  67. 18. Learn Python/16. Variables.mp493.56MB
  68. 18. Learn Python/17. Expressions vs Statements.mp410.97MB
  69. 18. Learn Python/18. Augmented Assignment Operator.mp415.32MB
  70. 18. Learn Python/19. Strings.mp430.98MB
  71. 18. Learn Python/2. Python Interpreter.mp493.47MB
  72. 18. Learn Python/20. String Concatenation.mp47.34MB
  73. 18. Learn Python/21. Type Conversion.mp418.99MB
  74. 18. Learn Python/22. Escape Sequences.mp423.15MB
  75. 18. Learn Python/23. Formatted Strings.mp449.26MB
  76. 18. Learn Python/24. String Indexes.mp449.15MB
  77. 18. Learn Python/25. Immutability.mp420.8MB
  78. 18. Learn Python/26. Built-In Functions + Methods.mp469.39MB
  79. 18. Learn Python/27. Booleans.mp416.55MB
  80. 18. Learn Python/28. Exercise Type Conversion.mp450.34MB
  81. 18. Learn Python/29. DEVELOPER FUNDAMENTALS II.mp429.25MB
  82. 18. Learn Python/3. How To Run Python Code.mp463.9MB
  83. 18. Learn Python/30. Exercise Password Checker.mp451.09MB
  84. 18. Learn Python/31. Lists.mp421.96MB
  85. 18. Learn Python/32. List Slicing.mp449.86MB
  86. 18. Learn Python/33. Matrix.mp419.15MB
  87. 18. Learn Python/34. List Methods.mp461.75MB
  88. 18. Learn Python/35. List Methods 2.mp427.41MB
  89. 18. Learn Python/36. List Methods 3.mp427.66MB
  90. 18. Learn Python/37. Common List Patterns.mp440.47MB
  91. 18. Learn Python/38. List Unpacking.mp413.87MB
  92. 18. Learn Python/39. None.mp47.93MB
  93. 18. Learn Python/4. Our First Python Program.mp447.2MB
  94. 18. Learn Python/40. Dictionaries.mp432.7MB
  95. 18. Learn Python/41. DEVELOPER FUNDAMENTALS III.mp426.63MB
  96. 18. Learn Python/42. Dictionary Keys.mp420.37MB
  97. 18. Learn Python/43. Dictionary Methods.mp427.17MB
  98. 18. Learn Python/44. Dictionary Methods 2.mp442.39MB
  99. 18. Learn Python/45. Tuples.mp425.65MB
  100. 18. Learn Python/46. Tuples 2.mp416.99MB
  101. 18. Learn Python/47. Sets.mp436.98MB
  102. 18. Learn Python/48. Sets 2.mp464.26MB
  103. 18. Learn Python/5. Python 2 vs Python 3.mp482.14MB
  104. 18. Learn Python/6. Exercise How Does Python Work.mp425.96MB
  105. 18. Learn Python/7. Learning Python.mp438.52MB
  106. 18. Learn Python/8. Python Data Types.mp428.85MB
  107. 19. Learn Python Part 2/30. Exercise Functions.mp421.85MB
  108. 19. Learn Python Part 2/43. Exercise Comprehensions.mp421.96MB
  109. 2. Machine Learning 101/1. What Is Machine Learning.mp416.92MB
  110. 2. Machine Learning 101/2. AIMachine LearningData Science.mp419.67MB
  111. 2. Machine Learning 101/3. Exercise Machine Learning Playground.mp442.6MB
  112. 2. Machine Learning 101/4. How Did We Get Here.mp430.5MB
  113. 2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.mp419.43MB
  114. 2. Machine Learning 101/6. Types of Machine Learning.mp422.75MB
  115. 2. Machine Learning 101/8. What Is Machine Learning Round 2.mp425.52MB
  116. 2. Machine Learning 101/9. Section Review.mp42.52MB
  117. 21. Where To Go From Here/2. Thank You.mp411.12MB
  118. 3. Machine Learning and Data Science Framework/1. Section Overview.mp413.35MB
  119. 3. Machine Learning and Data Science Framework/10. Modelling - Tuning.mp415.98MB
  120. 3. Machine Learning and Data Science Framework/11. Modelling - Comparison.mp444.88MB
  121. 3. Machine Learning and Data Science Framework/12. Experimentation.mp421.33MB
  122. 3. Machine Learning and Data Science Framework/13. Tools We Will Use.mp427.33MB
  123. 3. Machine Learning and Data Science Framework/2. Introducing Our Framework.mp411.39MB
  124. 3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.mp423.46MB
  125. 3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.mp460.5MB
  126. 3. Machine Learning and Data Science Framework/5. Types of Data.mp429.33MB
  127. 3. Machine Learning and Data Science Framework/6. Types of Evaluation.mp417.76MB
  128. 3. Machine Learning and Data Science Framework/7. Features In Data.mp436.78MB
  129. 3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.mp427.51MB
  130. 3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.mp423.24MB
  131. 4. The 2 Paths/1. The 2 Paths.mp49.76MB
  132. 5. Data Science Environment Setup/1. Section Overview.mp42.27MB
  133. 5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.mp467.35MB
  134. 5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.mp4103.9MB
  135. 5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.mp437.94MB
  136. 5. Data Science Environment Setup/2. Introducing Our Tools.mp419.29MB
  137. 5. Data Science Environment Setup/3. What is Conda.mp412.49MB
  138. 5. Data Science Environment Setup/4. Conda Environments.mp430.56MB
  139. 5. Data Science Environment Setup/5. Mac Environment Setup.mp4144.39MB
  140. 5. Data Science Environment Setup/6. Mac Environment Setup 2.mp4125.46MB
  141. 5. Data Science Environment Setup/7. Windows Environment Setup.mp447.92MB
  142. 5. Data Science Environment Setup/8. Windows Environment Setup 2.mp4227.6MB
  143. 6. Pandas Data Analysis/1. Section Overview.mp410.88MB
  144. 6. Pandas Data Analysis/10. Manipulating Data 2.mp486.53MB
  145. 6. Pandas Data Analysis/11. Manipulating Data 3.mp491.02MB
  146. 6. Pandas Data Analysis/13. How To Download The Course Assignments.mp466.78MB
  147. 6. Pandas Data Analysis/3. Pandas Introduction.mp427.44MB
  148. 6. Pandas Data Analysis/9. Manipulating Data.mp4104.99MB
  149. 7. NumPy/1. Section Overview.mp413.32MB
  150. 7. NumPy/10. Standard Deviation and Variance.mp451.16MB
  151. 7. NumPy/11. Reshape and Transpose.mp453.53MB
  152. 7. NumPy/12. Dot Product vs Element Wise.mp483.93MB
  153. 7. NumPy/13. Exercise Nut Butter Store Sales.mp491.32MB
  154. 7. NumPy/14. Comparison Operators.mp426.37MB
  155. 7. NumPy/15. Sorting Arrays.mp432.83MB
  156. 7. NumPy/16. Turn Images Into NumPy Arrays.mp485.91MB
  157. 7. NumPy/2. NumPy Introduction.mp426.84MB
  158. 7. NumPy/4. NumPy DataTypes and Attributes.mp478.99MB
  159. 7. NumPy/5. Creating NumPy Arrays.mp466.77MB
  160. 7. NumPy/6. NumPy Random Seed.mp451.92MB
  161. 7. NumPy/7. Viewing Arrays and Matrices.mp470.64MB
  162. 7. NumPy/8. Manipulating Arrays.mp480.65MB
  163. 7. NumPy/9. Manipulating Arrays 2.mp467.9MB
  164. 8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.mp48.6MB
  165. 8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.mp498.8MB
  166. 8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.mp474.71MB
  167. 8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.mp449MB
  168. 8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.mp456.97MB
  169. 8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.mp482.04MB
  170. 8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.mp4119.75MB
  171. 8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.mp492.21MB
  172. 8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.mp4123.66MB
  173. 8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.mp449.52MB
  174. 8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.mp431.51MB
  175. 8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.mp486.45MB
  176. 8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.mp482.15MB
  177. 8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.mp467.03MB
  178. 8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.mp469.75MB
  179. 8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.mp438.09MB
  180. 8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.mp412.25MB
  181. 8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.mp460.35MB
  182. 9. Scikit-learn Creating Machine Learning Models/1. Section Overview.mp412.46MB
  183. 9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.mp416.54MB
  184. 9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.mp4135.02MB
  185. 9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.mp4104.84MB
  186. 9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4136.89MB
  187. 9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.mp4143.26MB
  188. 9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).mp486.92MB
  189. 9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).mp4118.84MB
  190. 9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.mp456.56MB
  191. 9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.mp440.63MB
  192. 9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.mp466.5MB
  193. 9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().mp454.33MB
  194. 9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).mp444.91MB
  195. 9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).mp487.13MB
  196. 9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).mp495.97MB
  197. 9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).mp431.41MB
  198. 9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).mp466.03MB
  199. 9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).mp450.61MB
  200. 9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).mp477.72MB
  201. 9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).mp463.59MB
  202. 9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).mp487.24MB
  203. 9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).mp470.39MB
  204. 9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).mp454.9MB
  205. 9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.mp491.49MB
  206. 9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.mp494.82MB
  207. 9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.mp490.93MB
  208. 9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.mp4175.53MB
  209. 9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.mp4116.77MB
  210. 9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.mp488.27MB
  211. 9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.mp4121.76MB
  212. 9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.mp452.6MB
  213. 9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.mp456.77MB
  214. 9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.mp4158.35MB
  215. 9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.mp4116.85MB
  216. 9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.mp475.13MB
  217. 9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.mp4190.18MB
  218. 9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.mp4176.13MB
  219. 9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.mp463.66MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统