首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Master Deep Learning with TensorFlow in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-11-13 05:48 2024-12-27 13:16 177 1.41 GB 94
二维码链接
[DesireCourse.Net] Udemy - Master Deep Learning with TensorFlow in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4105.79MB
  2. 1. Welcome! Course introduction/2. What does the course cover.mp416.36MB
  3. 10. Gradient descent and learning rates/1. Stochastic gradient descent.mp49.38MB
  4. 10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp44.31MB
  5. 10. Gradient descent and learning rates/3. Momentum.mp46.11MB
  6. 10. Gradient descent and learning rates/4. Learning rate schedules.mp410.3MB
  7. 10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp43.15MB
  8. 10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp48.86MB
  9. 10. Gradient descent and learning rates/7. Adaptive moment estimation.mp47.78MB
  10. 11. Preprocessing/1. Preprocessing introduction.mp48.42MB
  11. 11. Preprocessing/2. Basic preprocessing.mp43.65MB
  12. 11. Preprocessing/3. Standardization.mp48.33MB
  13. 11. Preprocessing/4. Dealing with categorical data.mp46.08MB
  14. 11. Preprocessing/5. One-hot and binary encoding.mp46.24MB
  15. 12. The MNIST example/1. The dataset.mp47.37MB
  16. 12. The MNIST example/2. How to tackle the MNIST.mp47.3MB
  17. 12. The MNIST example/3. Importing the relevant packages.mp45.46MB
  18. 12. The MNIST example/4. Outlining the model.mp418.37MB
  19. 12. The MNIST example/5. Declaring the loss and the optimization algorithm.mp47.14MB
  20. 12. The MNIST example/6. Accuracy of prediction.mp412.38MB
  21. 12. The MNIST example/7. Batching and early stopping.mp44.58MB
  22. 12. The MNIST example/8. Learning.mp415.9MB
  23. 12. The MNIST example/9. Discuss the results and test.mp421.97MB
  24. 13. Business case/1. Exploring the dataset and identifying predictors.mp423.26MB
  25. 13. Business case/10. Testing the model.mp44.29MB
  26. 13. Business case/11. A comment on the homework.mp413.01MB
  27. 13. Business case/2. Outlining the business case solution.mp43.84MB
  28. 13. Business case/3. Balancing the dataset.mp413.81MB
  29. 13. Business case/4. Preprocessing the data.mp434.33MB
  30. 13. Business case/6. Create a class for batching.mp427.65MB
  31. 13. Business case/7. Outlining the model.mp419.46MB
  32. 13. Business case/8. Optimizing the algorithm.mp412.22MB
  33. 13. Business case/9. Interpreting the result.mp45.35MB
  34. 14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp433.59MB
  35. 14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp449.38MB
  36. 14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4144.33MB
  37. 14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp433.84MB
  38. 14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp449.8MB
  39. 14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp426.67MB
  40. 14. Appendix Linear Algebra Fundamentals/5. Tensors.mp422.52MB
  41. 14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp432.61MB
  42. 14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp411.17MB
  43. 14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp438.08MB
  44. 14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp423.99MB
  45. 15. Conclusion/1. See how much you have learned.mp413.96MB
  46. 15. Conclusion/2. What’s further out there in the machine and deep learning world.mp46.27MB
  47. 15. Conclusion/3. An overview of CNNs.mp410.93MB
  48. 15. Conclusion/5. An overview of RNNs.mp44.86MB
  49. 15. Conclusion/6. An overview of non-NN approaches.mp47.84MB
  50. 2. Introduction to neural networks/1. Introduction to neural networks.mp413.56MB
  51. 2. Introduction to neural networks/10. The linear model. Multiple inputs.mp47.5MB
  52. 2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp438.29MB
  53. 2. Introduction to neural networks/14. Graphical representation.mp46.35MB
  54. 2. Introduction to neural networks/16. The objective function.mp45.72MB
  55. 2. Introduction to neural networks/18. L2-norm loss.mp47.27MB
  56. 2. Introduction to neural networks/20. Cross-entropy loss.mp411.36MB
  57. 2. Introduction to neural networks/22. One parameter gradient descent.mp417.76MB
  58. 2. Introduction to neural networks/24. N-parameter gradient descent.mp439.46MB
  59. 2. Introduction to neural networks/3. Training the model.mp48.81MB
  60. 2. Introduction to neural networks/5. Types of machine learning.mp412.21MB
  61. 2. Introduction to neural networks/7. The linear model.mp49.13MB
  62. 3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp42.62MB
  63. 3. Setting up the working environment/2. Why Python and why Jupyter.mp413.63MB
  64. 3. Setting up the working environment/4. Installing Anaconda.mp49.39MB
  65. 3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp45.59MB
  66. 3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp410.92MB
  67. 3. Setting up the working environment/9. Installing the TensorFlow package.mp44.86MB
  68. 4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp46.54MB
  69. 4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp410.71MB
  70. 4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp49.76MB
  71. 4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp420.8MB
  72. 5. TensorFlow - An introduction/1. TensorFlow outline.mp414.47MB
  73. 5. TensorFlow - An introduction/2. TensorFlow intro.mp47.54MB
  74. 5. TensorFlow - An introduction/3. Types of file formats in TensorFlow.mp45.83MB
  75. 5. TensorFlow - An introduction/4. Inputs, outputs, targets, weights, biases - model layout.mp412.95MB
  76. 5. TensorFlow - An introduction/5. Loss function and gradient descent - introducing optimizers.mp49.7MB
  77. 5. TensorFlow - An introduction/6. Model output.mp414.33MB
  78. 6. Going deeper Introduction to deep neural networks/1. Layers.mp44.74MB
  79. 6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp46.72MB
  80. 6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp413.41MB
  81. 6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp48.96MB
  82. 6. Going deeper Introduction to deep neural networks/5. Activation functions.mp48.74MB
  83. 6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp47.37MB
  84. 6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp411.06MB
  85. 6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp46.85MB
  86. 8. Overfitting/1. Underfitting and overfitting.mp411.06MB
  87. 8. Overfitting/2. Underfitting and overfitting - classification.mp46.76MB
  88. 8. Overfitting/3. Training and validation.mp49.24MB
  89. 8. Overfitting/4. Training, validation, and test.mp47.44MB
  90. 8. Overfitting/5. N-fold cross validation.mp46.99MB
  91. 8. Overfitting/6. Early stopping.mp49.43MB
  92. 9. Initialization/1. Initialization - Introduction.mp48.04MB
  93. 9. Initialization/2. Types of simple initializations.mp45.62MB
  94. 9. Initialization/3. Xavier initialization.mp45.82MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统