首页 磁力链接怎么用

[FreeCoursesOnline.Me] PacktPub - Deep Learning with Real World Projects [Video]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-1-27 11:51 2024-12-27 03:14 196 7.03 GB 156
二维码链接
[FreeCoursesOnline.Me] PacktPub - Deep Learning with Real World Projects [Video]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1 - Introduction/Activation Functions.mp4151.3MB
  2. 1 - Introduction/Code Password.mp4719.85KB
  3. 1 - Introduction/History of Deep learning.mp481.44MB
  4. 1 - Introduction/Introduction.mp465.6MB
  5. 1 - Introduction/Multi-Level Perceptrons.mp481.52MB
  6. 1 - Introduction/Neural Network Playground.mp4152.12MB
  7. 1 - Introduction/Perceptrons.mp437.66MB
  8. 1 - Introduction/Representations.mp4158.08MB
  9. 1 - Introduction/Training Neural Network - Part 1.mp4122.56MB
  10. 1 - Introduction/Training Neural Network - Part 2.mp456.79MB
  11. 1 - Introduction/Training Neural Network - Part 3.mp4110.75MB
  12. 10 - CNN-Industry Live Project - Find..Save Life/Introduction.mp410.86MB
  13. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 1.mp49.03MB
  14. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 2.mp48.82MB
  15. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 3.mp414.09MB
  16. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 4.mp418.31MB
  17. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 5.mp426.57MB
  18. 10 - CNN-Industry Live Project - Find..Save Life/Working with X-Ray images - Case Study - Part 6.mp418.34MB
  19. 11 - Recurrent Neural Networks - Introduction/Architecture.mp422.48MB
  20. 11 - Recurrent Neural Networks - Introduction/Batch data.mp48.52MB
  21. 11 - Recurrent Neural Networks - Introduction/Introduction to RNN.mp413.47MB
  22. 11 - Recurrent Neural Networks - Introduction/One-to-Many.mp417.41MB
  23. 11 - Recurrent Neural Networks - Introduction/RNN - Part 1.mp49.87MB
  24. 11 - Recurrent Neural Networks - Introduction/RNN Formula.mp429.21MB
  25. 11 - Recurrent Neural Networks - Introduction/RNN Part 2.mp46.43MB
  26. 11 - Recurrent Neural Networks - Introduction/Simplified Notations.mp429.4MB
  27. 11 - Recurrent Neural Networks - Introduction/Training RNN.mp411.6MB
  28. 11 - Recurrent Neural Networks - Introduction/Types of RNN - Part 1.mp47.41MB
  29. 11 - Recurrent Neural Networks - Introduction/Types of RNN - Part 2.mp413.22MB
  30. 11 - Recurrent Neural Networks - Introduction/Vanishing Gradient.mp421.37MB
  31. 12 - Recurrent Neural Networks - LSTM/Bidirectional RNN.mp414.31MB
  32. 12 - Recurrent Neural Networks - LSTM/Gated Recurrent Network (GRU).mp427.03MB
  33. 12 - Recurrent Neural Networks - LSTM/Introduction.mp44.43MB
  34. 12 - Recurrent Neural Networks - LSTM/LSTM - Part 1.mp47.66MB
  35. 12 - Recurrent Neural Networks - LSTM/LSTM - Part 2.mp45.96MB
  36. 12 - Recurrent Neural Networks - LSTM/LSTM - Part 3.mp44.17MB
  37. 12 - Recurrent Neural Networks - LSTM/LSTM - Part 4.mp411.56MB
  38. 12 - Recurrent Neural Networks - LSTM/LSTM - Part 5.mp419.68MB
  39. 12 - Recurrent Neural Networks - LSTM/LSTM Equation.mp48.51MB
  40. 12 - Recurrent Neural Networks - LSTM/Online Offline Mode.mp410.25MB
  41. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-2).mp487.66MB
  42. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-3).mp442.59MB
  43. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-4).mp457.08MB
  44. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-5).mp4109.35MB
  45. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-6).mp425.65MB
  46. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-7).mp459.99MB
  47. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-8).mp4120.05MB
  48. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case- study (Part-9).mp430.86MB
  49. 13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/Part-Of-Speech Tagger case-study (Part-1).mp456.18MB
  50. 14 - Text generation using RNN/Text Generation - Code generator case- study (Part-1).mp4171.29MB
  51. 14 - Text generation using RNN/Text Generation - Code generator case- study (Part-2).mp4105.19MB
  52. 14 - Text generation using RNN/Text Generation - Code generator case- study (Part-3).mp448.67MB
  53. 14 - Text generation using RNN/Text Generation - Code generator case- study (Part-4).mp440.03MB
  54. 2 - Artificial Neural Networks-Introduction/Activation Functions.mp441.88MB
  55. 2 - Artificial Neural Networks-Introduction/Assumptions in Neural Networks.mp445.8MB
  56. 2 - Artificial Neural Networks-Introduction/Deep Learning.mp428.97MB
  57. 2 - Artificial Neural Networks-Introduction/Example for Perceptron.mp444.98MB
  58. 2 - Artificial Neural Networks-Introduction/Homogeneous Co-ordinate.mp423.61MB
  59. 2 - Artificial Neural Networks-Introduction/Input Layer.mp453.57MB
  60. 2 - Artificial Neural Networks-Introduction/Introduction.mp423.91MB
  61. 2 - Artificial Neural Networks-Introduction/Multi Classifier.mp437.87MB
  62. 2 - Artificial Neural Networks-Introduction/Neural Networks.mp449.32MB
  63. 2 - Artificial Neural Networks-Introduction/Output Layer.mp414.07MB
  64. 2 - Artificial Neural Networks-Introduction/Perceptron for Classifiers.mp431.96MB
  65. 2 - Artificial Neural Networks-Introduction/Perceptron in Depth.mp430.71MB
  66. 2 - Artificial Neural Networks-Introduction/Perceptron.mp429.65MB
  67. 2 - Artificial Neural Networks-Introduction/Sigmoid function.mp426.53MB
  68. 2 - Artificial Neural Networks-Introduction/Training in Neural Networks.mp432.74MB
  69. 2 - Artificial Neural Networks-Introduction/Understanding Human Brain.mp426.64MB
  70. 2 - Artificial Neural Networks-Introduction/Understanding MNIST.mp420.44MB
  71. 2 - Artificial Neural Networks-Introduction/Understanding Notations.mp499.95MB
  72. 3 - ANN - Feed Forward Network/Bidirectional RNN.mp443.49MB
  73. 3 - ANN - Feed Forward Network/Introduction.mp450.45MB
  74. 3 - ANN - Feed Forward Network/Online Offline Mode.mp436.04MB
  75. 3 - ANN - Feed Forward Network/Pseudocode for Batch.mp428.82MB
  76. 3 - ANN - Feed Forward Network/Pseudocode.mp440.65MB
  77. 3 - ANN - Feed Forward Network/Understanding Dimensions.mp458.63MB
  78. 3 - ANN - Feed Forward Network/Vectorised Methods.mp481.39MB
  79. 4 - Back Propagation/Back Propagation Training - Part 1.mp446.54MB
  80. 4 - Back Propagation/Back Propagation Training - Part 10.mp423.04MB
  81. 4 - Back Propagation/Back Propagation Training - Part 2.mp438.07MB
  82. 4 - Back Propagation/Back Propagation Training - Part 3.mp414.74MB
  83. 4 - Back Propagation/Back Propagation Training - Part 4.mp434.74MB
  84. 4 - Back Propagation/Back Propagation Training - Part 5.mp434.76MB
  85. 4 - Back Propagation/Back Propagation Training - Part 6.mp423.3MB
  86. 4 - Back Propagation/Back Propagation Training - Part 7.mp420.59MB
  87. 4 - Back Propagation/Back Propagation Training - Part 8.mp427MB
  88. 4 - Back Propagation/Back Propagation Training - Part 9.mp428.96MB
  89. 4 - Back Propagation/Finding Global Minima.mp410.31MB
  90. 4 - Back Propagation/Introducing Loss Function.mp444.13MB
  91. 4 - Back Propagation/Introduction.mp435.37MB
  92. 4 - Back Propagation/Pseudocode.mp412.67MB
  93. 4 - Back Propagation/SGD.mp438.95MB
  94. 4 - Back Propagation/Sigmoid Function.mp425.96MB
  95. 4 - Back Propagation/Training for Batches.mp422.82MB
  96. 5 - Regularisation/Batch Normalisation - Part 1.mp436.08MB
  97. 5 - Regularisation/Batch Normalisation - Part 2.mp437.55MB
  98. 5 - Regularisation/Batch Normalisation - Part 3.mp450.64MB
  99. 5 - Regularisation/Dropouts Part 1.mp424.18MB
  100. 5 - Regularisation/Dropouts Part 2.mp413.46MB
  101. 5 - Regularisation/Introducing Keras.mp4122.91MB
  102. 5 - Regularisation/Introducing TensorFlow.mp445.42MB
  103. 5 - Regularisation/Introduction to Regularisation.mp449.04MB
  104. 6 - Convolution Neural Networks/Applications for CNN.mp454.5MB
  105. 6 - Convolution Neural Networks/Combining Network.mp453.18MB
  106. 6 - Convolution Neural Networks/Convolution - Part 1.mp443.4MB
  107. 6 - Convolution Neural Networks/Convolution - Part 2.mp479.49MB
  108. 6 - Convolution Neural Networks/Feature Map.mp4127.57MB
  109. 6 - Convolution Neural Networks/Formulas.mp418.56MB
  110. 6 - Convolution Neural Networks/Idea behind CNN - Part 1.mp445.92MB
  111. 6 - Convolution Neural Networks/Idea behind CNN - Part 2.mp475.88MB
  112. 6 - Convolution Neural Networks/Images.mp4161.11MB
  113. 6 - Convolution Neural Networks/Introduction.mp442.93MB
  114. 6 - Convolution Neural Networks/Padding.mp415.13MB
  115. 6 - Convolution Neural Networks/Pooling.mp470.59MB
  116. 6 - Convolution Neural Networks/Stride and Padding.mp434.19MB
  117. 6 - Convolution Neural Networks/Video.mp440MB
  118. 6 - Convolution Neural Networks/Weight and Bias.mp482.52MB
  119. 7 - CNN-Keras/Introduction.mp47.73MB
  120. 7 - CNN-Keras/Practical on CNN - Case Study - Part 1.mp410.29MB
  121. 7 - CNN-Keras/Practical on CNN - Case Study - Part 2.mp428.31MB
  122. 7 - CNN-Keras/Practical on CNN - Case Study - Part 3.mp436MB
  123. 7 - CNN-Keras/Practical on CNN - Case Study - Part 4.mp413.22MB
  124. 7 - CNN-Keras/Practical on CNN - Case Study - Part 5.mp47.5MB
  125. 7 - CNN-Keras/VGG16 (Visual Geometry Group).mp444.63MB
  126. 8 - CNN-Transfer Learning/AlexNet.mp473.82MB
  127. 8 - CNN-Transfer Learning/Analysis - Part 1.mp4109.77MB
  128. 8 - CNN-Transfer Learning/Analysis - Part 2.mp446.01MB
  129. 8 - CNN-Transfer Learning/Case Study - Part 1.mp4194.08MB
  130. 8 - CNN-Transfer Learning/Case Study - Part 2.mp495.9MB
  131. 8 - CNN-Transfer Learning/Case Study - Part 3.mp439.14MB
  132. 8 - CNN-Transfer Learning/GoogleNet.mp448.7MB
  133. 8 - CNN-Transfer Learning/Introduction.mp444.61MB
  134. 8 - CNN-Transfer Learning/ResNet - Part 1.mp432.3MB
  135. 8 - CNN-Transfer Learning/ResNet - Part 2.mp428.15MB
  136. 8 - CNN-Transfer Learning/Transfer Learning - Part 1.mp47.42MB
  137. 8 - CNN-Transfer Learning/Transfer Learning - Part 2.mp419.86MB
  138. 8 - CNN-Transfer Learning/Transfer Learning - Part 3.mp435.32MB
  139. 8 - CNN-Transfer Learning/Transfer Learning - Part 4.mp439.9MB
  140. 8 - CNN-Transfer Learning/Transfer Learning - Part 5.mp427.1MB
  141. 8 - CNN-Transfer Learning/Transfer Learning - Part 6.mp436.34MB
  142. 9 - CNN-Industry Live Project - Playing..Natural Images/Introduction.mp419.69MB
  143. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 1.mp449.56MB
  144. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 10.mp456.74MB
  145. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 11.mp461.74MB
  146. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 12.mp4159.46MB
  147. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 13.mp431.75MB
  148. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 14.mp475.11MB
  149. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 2.mp4118.7MB
  150. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 3.mp450.13MB
  151. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 4.mp448.57MB
  152. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 5.mp439.33MB
  153. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 6.mp472.1MB
  154. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 7.mp426.29MB
  155. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 8.mp491.39MB
  156. 9 - CNN-Industry Live Project - Playing..Natural Images/Working with Flower Images - Case Study - Part 9.mp481.05MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统