首页 磁力链接怎么用

PyTorch-Deep Learning and Artificial Intelligence [updated]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-12-17 11:57 2024-12-27 03:13 157 7.28 GB 137
二维码链接
PyTorch-Deep Learning and Artificial Intelligence [updated]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/18. Setting up your Environment/2. Windows-Focused Environment Setup 2018.mp4180.67MB
  2. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/1. Introduction/1. Welcome.mp435.71MB
  3. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/1. Introduction/2. Overview and Outline.mp479.66MB
  4. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/1. Introduction/3. Where to get the Code.mp430.17MB
  5. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp460.45MB
  6. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/2. Google Colab/2. Uploading your own data to Google Colab.mp490.53MB
  7. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/2. Google Colab/3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp444.39MB
  8. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/1. What is Machine Learning.mp470.59MB
  9. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/2. Regression Basics.mp473.02MB
  10. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/3. Regression Code Preparation.mp445.53MB
  11. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/4. Regression Notebook.mp471.93MB
  12. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/5. Moore's Law.mp430.63MB
  13. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/6. Moore's Law Notebook.mp478.92MB
  14. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/7. Linear Classification Basics.mp467.22MB
  15. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/8. Classification Code Preparation.mp426.54MB
  16. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/9. Classification Notebook.mp478.28MB
  17. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/10. Saving and Loading a Model.mp428.83MB
  18. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/11. A Short Neuroscience Primer.mp444.66MB
  19. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/12. How does a model learn.mp450.08MB
  20. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/13. Model With Logits.mp427.31MB
  21. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/3. Machine Learning and Neurons/14. Train Sets vs. Validation Sets vs. Test Sets.mp452.14MB
  22. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp433.48MB
  23. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/2. Forward Propagation.mp447.1MB
  24. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp456.42MB
  25. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/4. Activation Functions.mp489.24MB
  26. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp448.69MB
  27. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/6. How to Represent Images.mp475.43MB
  28. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN).mp467.55MB
  29. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/8. ANN for Image Classification.mp4106.33MB
  30. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/4. Feedforward Artificial Neural Networks/9. ANN for Regression.mp480.18MB
  31. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/1. What is Convolution (part 1).mp479.65MB
  32. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/2. What is Convolution (part 2).mp424.49MB
  33. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/3. What is Convolution (part 3).mp428.7MB
  34. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/4. Convolution on Color Images.mp476.38MB
  35. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/5. CNN Architecture.mp489.53MB
  36. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/6. CNN Code Preparation (part 1).mp476.74MB
  37. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/7. CNN Code Preparation (part 2).mp436.72MB
  38. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/8. CNN Code Preparation (part 3).mp433.69MB
  39. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/9. CNN for Fashion MNIST.mp474.46MB
  40. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/10. CNN for CIFAR-10.mp456.72MB
  41. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/11. Data Augmentation.mp444.52MB
  42. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/12. Batch Normalization.mp423.44MB
  43. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/5. Convolutional Neural Networks/13. Improving CIFAR-10 Results.mp477.42MB
  44. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.mp4114.29MB
  45. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.mp448.7MB
  46. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.mp481.19MB
  47. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.mp417.91MB
  48. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.mp492.61MB
  49. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.mp455.31MB
  50. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.mp471.85MB
  51. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.mp456.41MB
  52. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).mp476.07MB
  53. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).mp450.56MB
  54. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.mp486.67MB
  55. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/12. RNN for Image Classification (Theory).mp432.26MB
  56. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Code).mp420.53MB
  57. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/14. Stock Return Predictions using LSTMs (pt 1).mp477.82MB
  58. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 2).mp443.22MB
  59. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 3).mp471.07MB
  60. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Other Ways to Forecast.mp428.27MB
  61. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/1. Embeddings.mp459.97MB
  62. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/2. Neural Networks with Embeddings.mp415.63MB
  63. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/3. Text Preprocessing (pt 1).mp452.29MB
  64. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/4. Text Preprocessing (pt 2).mp444.42MB
  65. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/5. Text Preprocessing (pt 3).mp447.74MB
  66. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/6. Text Classification with LSTMs.mp465.05MB
  67. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/7. CNNs for Text.mp458.7MB
  68. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/8. Text Classification with CNNs.mp439.33MB
  69. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/7. Natural Language Processing (NLP)/9. VIP Making Predictions with a Trained NLP Model.mp448.81MB
  70. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.mp464.75MB
  71. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/8. Recommender Systems/2. Recommender Systems with Deep Learning Code Preparation.mp440.1MB
  72. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/8. Recommender Systems/3. Recommender Systems with Deep Learning Code (pt 1).mp469.58MB
  73. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/8. Recommender Systems/4. Recommender Systems with Deep Learning Code (pt 2).mp476.87MB
  74. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/8. Recommender Systems/5. VIP Making Predictions with a Trained Recommender Model.mp432.74MB
  75. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.mp458.19MB
  76. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp421.67MB
  77. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/3. Large Datasets.mp441.26MB
  78. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.mp421.79MB
  79. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).mp477.78MB
  80. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).mp456.32MB
  81. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/10. GANs (Generative Adversarial Networks)/1. GAN Theory.mp492.11MB
  82. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/10. GANs (Generative Adversarial Networks)/2. GAN Code Preparation.mp428.08MB
  83. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/10. GANs (Generative Adversarial Networks)/3. GAN Code.mp461.37MB
  84. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.mp440.66MB
  85. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.mp4104.93MB
  86. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.mp444.12MB
  87. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).mp450.51MB
  88. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/5. The Return.mp423.42MB
  89. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.mp447.72MB
  90. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.mp432.51MB
  91. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp442.62MB
  92. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp457.02MB
  93. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.mp441.47MB
  94. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/11. Q-Learning.mp466.79MB
  95. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning DQN (pt 1).mp460.24MB
  96. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning DQN (pt 2).mp452.22MB
  97. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.mp440.25MB
  98. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.mp428.82MB
  99. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.mp455.69MB
  100. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.mp424.97MB
  101. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.mp426.86MB
  102. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.mp466.34MB
  103. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.mp469.98MB
  104. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.mp458.59MB
  105. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.mp452.32MB
  106. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.mp417.22MB
  107. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/13. VIP Uncertainty Estimation/1. Custom Loss and Estimating Prediction Uncertainty.mp443.55MB
  108. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/13. VIP Uncertainty Estimation/2. Estimating Prediction Uncertainty Code.mp442.75MB
  109. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/1. Facial Recognition Section Introduction.mp424.31MB
  110. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/2. Siamese Networks.mp450.52MB
  111. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/3. Code Outline.mp423.86MB
  112. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/4. Loading in the data.mp435.07MB
  113. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/5. Splitting the data into train and test.mp426.3MB
  114. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/6. Converting the data into pairs.mp430.38MB
  115. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/7. Generating Generators.mp432.44MB
  116. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/8. Creating the model and loss.mp429.38MB
  117. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/9. Accuracy and imbalanced classes.mp451.09MB
  118. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/14. VIP Facial Recognition/10. Facial Recognition Section Summary.mp418.33MB
  119. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/15. In-Depth Loss Functions/1. Mean Squared Error.mp433.79MB
  120. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/15. In-Depth Loss Functions/2. Binary Cross Entropy.mp423.68MB
  121. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/15. In-Depth Loss Functions/3. Categorical Cross Entropy.mp431.74MB
  122. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/16. In-Depth Gradient Descent/1. Gradient Descent.mp434.91MB
  123. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp422.98MB
  124. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/16. In-Depth Gradient Descent/3. Momentum.mp434.25MB
  125. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp434.85MB
  126. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/16. In-Depth Gradient Descent/5. Adam.mp438.9MB
  127. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/18. Setting up your Environment/1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4150.67MB
  128. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/18. Setting up your Environment/3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4167.32MB
  129. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/1. What is the Appendix.mp416.38MB
  130. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4105.66MB
  131. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/3. How to Code Yourself (part 1).mp471.87MB
  132. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/4. How to Code Yourself (part 2).mp449.15MB
  133. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/5. Proof that using Jupyter Notebook is the same as not using it.mp469.5MB
  134. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/6. How to Succeed in this Course (Long Version).mp435.25MB
  135. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/7. What order should I take your courses in (part 1).mp479.59MB
  136. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/8. What order should I take your courses in (part 2).mp4108.23MB
  137. [CourseRecap.Com] - PyTorch - Deep Learning and Artificial Intelligence/19. Appendix FAQ/9. BONUS Where to get discount coupons and FREE deep learning material.mp437.81MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统