首页 磁力链接怎么用

[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-6-5 18:52 2024-12-27 01:45 233 2.3 GB 82
二维码链接
[FreeCoursesOnline.Me] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01.Welcome! Course introduction/0101.Meet your instructors and why you should study machine learning.mp484.75MB
  2. 01.Welcome! Course introduction/0102.What does the course cover.mp439.08MB
  3. 02.Introduction to neural networks/0201.Introduction to neural networks.mp445.75MB
  4. 02.Introduction to neural networks/0202.Training the model.mp426.82MB
  5. 02.Introduction to neural networks/0203.Types of machine learning.mp440.85MB
  6. 02.Introduction to neural networks/0204.The linear model.mp426.04MB
  7. 02.Introduction to neural networks/0205.The linear model. Multiple inputs.mp423.69MB
  8. 02.Introduction to neural networks/0206.The linear model. Multiple inputs and multiple outputs.mp442.21MB
  9. 02.Introduction to neural networks/0207.Graphical representation.mp421.96MB
  10. 02.Introduction to neural networks/0208.The objective function.mp417.7MB
  11. 02.Introduction to neural networks/0209.L2-norm loss.mp421.4MB
  12. 02.Introduction to neural networks/0210.Cross-entropy loss.mp433.4MB
  13. 02.Introduction to neural networks/0211.One parameter gradient descent.mp456.41MB
  14. 02.Introduction to neural networks/0212.N-parameter gradient descent.mp457.61MB
  15. 03.Setting up the working environment/0301.Setting up the environment - An introduction - Do not skip, please!.mp46.91MB
  16. 03.Setting up the working environment/0302.Why Python and why Jupyter.mp434.69MB
  17. 03.Setting up the working environment/0303.Installing Anaconda.mp431.33MB
  18. 03.Setting up the working environment/0304.The Jupyter dashboard - part 1.mp49.24MB
  19. 03.Setting up the working environment/0305.The Jupyter dashboard - part 2.mp420.37MB
  20. 03.Setting up the working environment/0306.Installing TensorFlow 2.mp451.17MB
  21. 04.Minimal example - your first machine learning algorithm/0401.Minimal example - part 1.mp436.36MB
  22. 04.Minimal example - your first machine learning algorithm/0402.Minimal example - part 2.mp423.74MB
  23. 04.Minimal example - your first machine learning algorithm/0403.Minimal example - part 3.mp420.43MB
  24. 04.Minimal example - your first machine learning algorithm/0404.Minimal example - part 4.mp430.41MB
  25. 05.TensorFlow - An introduction/0501.TensorFlow outline.mp441.97MB
  26. 05.TensorFlow - An introduction/0502.TensorFlow 2 intro.mp437.84MB
  27. 05.TensorFlow - An introduction/0503.A Note on Coding in TensorFlow.mp48.14MB
  28. 05.TensorFlow - An introduction/0504.Types of file formats in TensorFlow and data handling.mp413.28MB
  29. 05.TensorFlow - An introduction/0505.Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp432.94MB
  30. 05.TensorFlow - An introduction/0506.Interpreting the result and extracting the weights and bias.mp431.38MB
  31. 05.TensorFlow - An introduction/0507.Customizing your model.mp421.62MB
  32. 06.Going deeper Introduction to deep neural networks/0601.Layers.mp420.55MB
  33. 06.Going deeper Introduction to deep neural networks/0602.What is a deep net.mp432.6MB
  34. 06.Going deeper Introduction to deep neural networks/0603.Understanding deep nets in depth.mp458.18MB
  35. 06.Going deeper Introduction to deep neural networks/0604.Why do we need non-linearities.mp437.97MB
  36. 06.Going deeper Introduction to deep neural networks/0605.Activation functions.mp437.97MB
  37. 06.Going deeper Introduction to deep neural networks/0606.Softmax activation.mp424.98MB
  38. 06.Going deeper Introduction to deep neural networks/0607.Backpropagation.mp452.73MB
  39. 06.Going deeper Introduction to deep neural networks/0608.Backpropagation - visual representation.mp424.39MB
  40. 07.Overfitting/0701.Underfitting and overfitting.mp434.06MB
  41. 07.Overfitting/0702.Underfitting and overfitting - classification.mp432.48MB
  42. 07.Overfitting/0703.Training and validation.mp437.52MB
  43. 07.Overfitting/0704.Training, validation, and test.mp431.32MB
  44. 07.Overfitting/0705.N-fold cross validation.mp425.57MB
  45. 07.Overfitting/0706.Early stopping.mp428.33MB
  46. 08.Initialization/0801.Initialization - Introduction.mp426.17MB
  47. 08.Initialization/0802.Types of simple initializations.mp412.29MB
  48. 08.Initialization/0803.Xavier initialization.mp419.12MB
  49. 09.Gradient descent and learning rates/0901.Stochastic gradient descent.mp434.48MB
  50. 09.Gradient descent and learning rates/0902.Gradient descent pitfalls.mp414.35MB
  51. 09.Gradient descent and learning rates/0903.Momentum.mp418.96MB
  52. 09.Gradient descent and learning rates/0904.Learning rate schedules.mp437.08MB
  53. 09.Gradient descent and learning rates/0905.Learning rate schedules. A picture.mp410.93MB
  54. 09.Gradient descent and learning rates/0906.Adaptive learning rate schedules.mp429.83MB
  55. 09.Gradient descent and learning rates/0907.Adaptive moment estimation.mp429.08MB
  56. 10.Preprocessing/1001.Preprocessing introduction.mp425.55MB
  57. 10.Preprocessing/1002.Basic preprocessing.mp411.11MB
  58. 10.Preprocessing/1003.Standardization.mp440.37MB
  59. 10.Preprocessing/1004.Dealing with categorical data.mp418.22MB
  60. 10.Preprocessing/1005.One-hot and binary encoding.mp432.26MB
  61. 11.The MNIST example/1101.The dataset.mp420.74MB
  62. 11.The MNIST example/1102.How to tackle the MNIST.mp433.29MB
  63. 11.The MNIST example/1103.Importing the relevant packages and load the data.mp415.85MB
  64. 11.The MNIST example/1104.Preprocess the data - create a validation dataset and scale the data.mp427.05MB
  65. 11.The MNIST example/1105.Preprocess the data - shuffle and batch the data.mp436.58MB
  66. 11.The MNIST example/1106.Outline the model.mp427.36MB
  67. 11.The MNIST example/1107.Select the loss and the optimizer.mp412.71MB
  68. 11.The MNIST example/1108.Learning.mp420.43MB
  69. 11.The MNIST example/1109.Testing the model.mp415.26MB
  70. 12.Business case/1201.Exploring the dataset and identifying predictors.mp430.16MB
  71. 12.Business case/1202.Outlining the business case solution.mp49.52MB
  72. 12.Business case/1203.Balancing the dataset.mp413.75MB
  73. 12.Business case/1204.Preprocessing the data.mp444.52MB
  74. 12.Business case/1205.Load the preprocessed data.mp418.22MB
  75. 12.Business case/1206.Learning and interpreting the result.mp426.4MB
  76. 12.Business case/1207.Setting an early stopping mechanism.mp421.45MB
  77. 12.Business case/1208.Testing the model.mp49.63MB
  78. 13.Conclusion/1301.See how much you have learned.mp438.88MB
  79. 13.Conclusion/1302.What's further out there in the machine and deep learning world.mp417.51MB
  80. 13.Conclusion/1303.An overview of CNNs.mp418.62MB
  81. 13.Conclusion/1304.An overview of RNNs.mp427.42MB
  82. 13.Conclusion/1305.An overview of non-NN approaches.mp440.17MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统