首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[Manning] Data science bookcamp (hevc) (2021) [EN]
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2025-4-20 20:02
2025-5-1 13:42
24
610.43 MB
128
磁力链接
magnet:?xt=urn:btih:89f00911282dc5d5b4804682bf1443ce1e98c8b1
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjg5ZjAwOTExMjgyZGM1ZDViNDgwNDY4MmJmMTQ0M2NlMWU5OGM4YjFaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Manning
Data
science
bookcamp
hevc
2021
EN
文件列表
001 Case study 1 - Finding the winning strategy in a card game.m4v
785.75KB
002 Ch1. Computing probabilities using Python This section covers.m4v
5.62MB
003 Ch1. Problem 2 - Analyzing multiple die rolls.m4v
6.17MB
004 Ch2. Plotting probabilities using Matplotlib.m4v
5.76MB
005 Ch2. Comparing multiple coin-flip probability distributions.m4v
6.27MB
006 Ch3. Running random simulations in NumPy.m4v
3.71MB
007 Ch3. Computing confidence intervals using histograms and NumPy arrays.m4v
5.09MB
008 Ch3. Deriving probabilities from histograms.m4v
5.59MB
009 Ch3. Computing histograms in NumPy.m4v
5.19MB
010 Ch3. Using permutations to shuffle cards.m4v
3.59MB
011 Ch4. Case study 1 solution.m4v
3.68MB
012 Ch4. Optimizing strategies using the sample space for a 10-card deck.m4v
3.93MB
013 Case study 2 - Assessing online ad clicks for significance.m4v
2.92MB
014 Ch5. Basic probability and statistical analysis using SciPy.m4v
6.13MB
015 Ch5. Mean as a measure of centrality.m4v
4.7MB
016 Ch5. Variance as a measure of dispersion.m4v
6.72MB
017 Ch6. Making predictions using the central limit theorem and SciPy.m4v
5.06MB
018 Ch6. Comparing two sampled normal curves.m4v
3.57MB
019 Ch6. Determining the mean and variance of a population through random sampling.m4v
5.59MB
020 Ch6. Computing the area beneath a normal curve.m4v
5.64MB
021 Ch7. Statistical hypothesis testing.m4v
3.79MB
022 Ch7. Assessing the divergence between sample mean and population mean.m4v
4.83MB
023 Ch7. Data dredging - Coming to false conclusions through oversampling.m4v
5.85MB
024 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.m4v
4.65MB
025 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.m4v
4.71MB
026 Ch7. Permutation testing - Comparing means of samples when the population parameters are unknown.m4v
4.14MB
027 Ch8. Analyzing tables using Pandas.m4v
4.89MB
028 Ch8. Retrieving table rows.m4v
4.33MB
029 Ch8. Saving and loading table data.m4v
3.8MB
030 Ch9. Case study 2 solution.m4v
3.56MB
031 Ch9. Determining statistical significance.m4v
3.82MB
032 Case study 3 - Tracking disease outbreaks using news headlines.m4v
772.36KB
033 Ch10. Clustering data into groups.m4v
5.87MB
034 Ch10. K-means - A clustering algorithm for grouping data into K central groups.m4v
5.73MB
035 Ch10. Using density to discover clusters.m4v
4.96MB
036 Ch10. Clustering based on non-Euclidean distance.m4v
4.87MB
037 Ch10. Analyzing clusters using Pandas.m4v
3.06MB
038 Ch11. Geographic location visualization and analysis.m4v
4.49MB
039 Ch11. Plotting maps using Cartopy.m4v
3.3MB
040 Ch11. Visualizing maps.m4v
6.38MB
041 Ch11. Location tracking using GeoNamesCache.m4v
6.02MB
042 Ch11. Limitations of the GeoNamesCache library.m4v
6.63MB
043 Ch12. Case study 3 solution.m4v
3.68MB
044 Ch12. Visualizing and clustering the extracted location data.m4v
6.68MB
045 Case study 4 - Using online job postings to improve your data science resume.m4v
2.35MB
046 Ch13. Measuring text similarities.m4v
3.73MB
047 Ch13. Simple text comparison.m4v
4.82MB
048 Ch13. Replacing words with numeric values.m4v
4.44MB
049 Ch13. Vectorizing texts using word counts.m4v
4.67MB
050 Ch13. Using normalization to improve TF vector similarity.m4v
4.32MB
051 Ch13. Using unit vector dot products to convert between relevance metrics.m4v
3.99MB
052 Ch13. Basic matrix operations, Part 1.m4v
5.3MB
053 Ch13. Basic matrix operations, Part 2.m4v
3.4MB
054 Ch13. Computational limits of matrix multiplication.m4v
4.47MB
055 Ch14. Dimension reduction of matrix data.m4v
5.47MB
056 Ch14. Reducing dimensions using rotation, Part 1.m4v
4.04MB
057 Ch14. Reducing dimensions using rotation, Part 2.m4v
3.56MB
058 Ch14. Dimension reduction using PCA and scikit-learn.m4v
6.43MB
059 Ch14. Clustering 4D data in two dimensions.m4v
4.85MB
060 Ch14. Limitations of PCA.m4v
3.12MB
061 Ch14. Computing principal components without rotation.m4v
4.7MB
062 Ch14. Extracting eigenvectors using power iteration, Part 1.m4v
4.38MB
063 Ch14. Extracting eigenvectors using power iteration, Part 2.m4v
3.5MB
064 Ch14. Efficient dimension reduction using SVD and scikit-learn.m4v
5.18MB
065 Ch15. NLP analysis of large text datasets.m4v
4.49MB
066 Ch15. Vectorizing documents using scikit-learn.m4v
7.16MB
067 Ch15. Ranking words by both post frequency and count, Part 1.m4v
4.98MB
068 Ch15. Ranking words by both post frequency and count, Part 2.m4v
4.57MB
069 Ch15. Computing similarities across large document datasets.m4v
5.26MB
070 Ch15. Clustering texts by topic, Part 1.m4v
6.09MB
071 Ch15. Clustering texts by topic, Part 2.m4v
6.87MB
072 Ch15. Visualizing text clusters.m4v
5.66MB
073 Ch15. Using subplots to display multiple word clouds, Part 1.m4v
4.17MB
074 Ch15. Using subplots to display multiple word clouds, Part 2.m4v
4.37MB
075 Ch16. Extracting text from web pages.m4v
4.04MB
076 Ch16. The structure of HTML documents.m4v
5.34MB
077 Ch16. Parsing HTML using Beautiful Soup, Part 1.m4v
4.44MB
078 Ch16. Parsing HTML using Beautiful Soup, Part 2.m4v
3.78MB
079 Ch17. Case study 4 solution.m4v
3.56MB
080 Ch17. Exploring the HTML for skill descriptions.m4v
4.71MB
081 Ch17. Filtering jobs by relevance.m4v
7MB
082 Ch17. Clustering skills in relevant job postings.m4v
6.2MB
083 Ch17. Investigating the technical skill clusters.m4v
4.13MB
084 Ch17. Exploring clusters at alternative values of K.m4v
5.22MB
085 Ch17. Analyzing the 700 most relevant postings.m4v
3.73MB
086 Case study 5 - Predicting future friendships from social network data.m4v
6.84MB
087 Ch18. An introduction to graph theory and network analysis.m4v
6.05MB
088 Ch18. Analyzing web networks using NetworkX, Part 1.m4v
3.88MB
089 Ch18. Analyzing web networks using NetworkX, Part 2.m4v
4.64MB
090 Ch18. Utilizing undirected graphs to optimize the travel time between towns.m4v
5.65MB
091 Ch18. Computing the fastest travel time between nodes, Part 1.m4v
3.13MB
092 Ch18. Computing the fastest travel time between nodes, Part 2.m4v
4.11MB
093 Ch19. Dynamic graph theory techniques for node ranking and social network analysis.m4v
6.71MB
094 Ch19. Computing travel probabilities using matrix multiplication.m4v
3.58MB
095 Ch19. Deriving PageRank centrality from probability theory.m4v
4.29MB
096 Ch19. Computing PageRank centrality using NetworkX.m4v
3.85MB
097 Ch19. Community detection using Markov clustering, Part 1.m4v
5.93MB
098 Ch19. Community detection using Markov clustering, Part 2.m4v
6.74MB
099 Ch19. Uncovering friend groups in social networks.m4v
4.77MB
100 Ch20. Network-driven supervised machine learning.m4v
4.33MB
101 Ch20. The basics of supervised machine learning.m4v
4.29MB
102 Ch20. Measuring predicted label accuracy, Part 1.m4v
4.74MB
103 Ch20. Measuring predicted label accuracy, Part 2.m4v
5.44MB
104 Ch20. Optimizing KNN performance.m4v
3.89MB
105 Ch20. Running a grid search using scikit-learn.m4v
4.26MB
106 Ch20. Limitations of the KNN algorithm.m4v
4.88MB
107 Ch21. Training linear classifiers with logistic regression.m4v
5.63MB
108 Ch21. Training a linear classifier, Part 1.m4v
4.74MB
109 Ch21. Training a linear classifier, Part 2.m4v
6.3MB
110 Ch21. Improving linear classification with logistic regression, Part 1.m4v
4.26MB
111 Ch21. Improving linear classification with logistic regression, Part 2.m4v
3.88MB
112 Ch21. Training linear classifiers using scikit-learn.m4v
4.75MB
113 Ch21. Measuring feature importance with coefficients.m4v
7.38MB
114 Ch22. Training nonlinear classifiers with decision tree techniques.m4v
6.36MB
115 Ch22. Training a nested if_else model using two features.m4v
5.34MB
116 Ch22. Deciding which feature to split on.m4v
5.96MB
117 Ch22. Training if_else models with more than two features.m4v
5.38MB
118 Ch22. Training decision tree classifiers using scikit-learn.m4v
4.95MB
119 Ch22. Studying cancerous cells using feature importance.m4v
5.41MB
120 Ch22. Improving performance using random forest classification.m4v
5.12MB
121 Ch22. Training random forest classifiers using scikit-learn.m4v
4.31MB
122 Ch23. Case study 5 solution.m4v
3.61MB
123 Ch23. Exploring the experimental observations.m4v
4.09MB
124 Ch23. Training a predictive model using network features, Part 1.m4v
3.98MB
125 Ch23. Training a predictive model using network features, Part 2.m4v
4.13MB
126 Ch23. Adding profile features to the model.m4v
5.21MB
127 Ch23. Optimizing performance across a steady set of features.m4v
4.03MB
128 Ch23. Interpreting the trained model.m4v
4.55MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统