首页 磁力链接怎么用

[FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-4-30 14:53 2025-1-20 20:45 213 591.66 MB 42
二维码链接
[FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. Chapter 1 - Exploring and Transforming data/01. The Course Overview.mp418.55MB
  2. Chapter 1 - Exploring and Transforming data/02. TensorFlow's Main Data Structure Tensors.mp427.13MB
  3. Chapter 1 - Exploring and Transforming data/03. Handling the Computing Workflow TensorFlow's Data Flow Graph.mp416.2MB
  4. Chapter 1 - Exploring and Transforming data/04. Basic Tensor Methods.mp436.91MB
  5. Chapter 1 - Exploring and Transforming data/05. How TensorBoard Works.mp424.56MB
  6. Chapter 1 - Exploring and Transforming data/06. Reading Information from Disk.mp421.8MB
  7. Chapter 2 - Clustering/07. Learning from Data Unsupervised Learing.mp44.63MB
  8. Chapter 2 - Clustering/08. Mechanics of k-Means.mp45.81MB
  9. Chapter 2 - Clustering/09. k-Nearest Neighbor.mp418.88MB
  10. Chapter 2 - Clustering/10. Project 1 k-Means Clustering on Synthetic Datasetsets.mp419.49MB
  11. Chapter 2 - Clustering/11. Project 2 Nearest Neighbor on Synthetic Datasets.mp49.92MB
  12. Chapter 3 - Linear Regression/12. Univariate Linear Modelling Function.mp48.77MB
  13. Chapter 3 - Linear Regression/13. Optimizer Methods in TensorFlow The Train Module.mp45.53MB
  14. Chapter 3 - Linear Regression/14. Univariate Linear Regression.mp425.25MB
  15. Chapter 3 - Linear Regression/15. Multivariate Linear Regression.mp421.52MB
  16. Chapter 4 - Logistic Regression/16. Logistic Function Predecessor The Logit Functions.mp46.9MB
  17. Chapter 4 - Logistic Regression/17. The Logistic Function.mp49.58MB
  18. Chapter 4 - Logistic Regression/18. Univariate Logistic Regression.mp431.62MB
  19. Chapter 4 - Logistic Regression/19. Univariate Logistic Regression with keras.mp412.47MB
  20. Chapter 5 - Simple FeedForward Neural Networks/20. Preliminary Concepts.mp413.36MB
  21. Chapter 5 - Simple FeedForward Neural Networks/21. First Project Non-Linear Synthetic Function Regression.mp413.63MB
  22. Chapter 5 - Simple FeedForward Neural Networks/22. Second Project Modeling Cars Fuel Efficiency with Non-Linear.mp415.6MB
  23. Chapter 5 - Simple FeedForward Neural Networks/23. Third Project Learning to Classify Wines Multiclass Classification.mp412.61MB
  24. Chapter 6 - Convolutional Neural Networks/24. Origin of Convolutional Neural Networks.mp45.4MB
  25. Chapter 6 - Convolutional Neural Networks/25. Applying Convolution in TensorFlow.mp417.9MB
  26. Chapter 6 - Convolutional Neural Networks/26. Subsampling Operation Pooling.mp410.85MB
  27. Chapter 6 - Convolutional Neural Networks/27. Improving Efficiency Dropout Operation.mp46.17MB
  28. Chapter 6 - Convolutional Neural Networks/28. Convolutional Type Layer Building Methods.mp42.9MB
  29. Chapter 6 - Convolutional Neural Networks/29. MNIST Digit Classification.mp417.87MB
  30. Chapter 6 - Convolutional Neural Networks/30. Image Classification with the CIFAR10 Dataset.mp412.92MB
  31. Chapter 7 - Recurrent Neural Networks and LSTM/31. Recurrent Neural Networks.mp46.48MB
  32. Chapter 7 - Recurrent Neural Networks and LSTM/32. A Fundamental Component Gate Operation and Its Steps.mp47.07MB
  33. Chapter 7 - Recurrent Neural Networks and LSTM/33. TensorFlow LSTM Useful Classes and Methods.mp43.05MB
  34. Chapter 7 - Recurrent Neural Networks and LSTM/34. Univariate Time Series Prediction with Energy Consumption Data.mp413.81MB
  35. Chapter 7 - Recurrent Neural Networks and LSTM/35. Writing Music a la Bach.mp444.93MB
  36. Chapter 8 - Deep Neural Networks/36. Deep Neural Network Definition and Architectures Through Time.mp44.87MB
  37. Chapter 8 - Deep Neural Networks/37. Alexnet.mp49.77MB
  38. Chapter 8 - Deep Neural Networks/38. Inception V3.mp41.85MB
  39. Chapter 8 - Deep Neural Networks/39. Residual Networks (ResNet).mp43.26MB
  40. Chapter 8 - Deep Neural Networks/40. Painting with Style VGG Style Transfer.mp415.43MB
  41. Chapter 9 - Library Installation And Additional Tips/41. Windows Installation.mp412.74MB
  42. Chapter 9 - Library Installation And Additional Tips/42. mac OS Installation.mp413.66MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统