首页 磁力链接怎么用

Neural Networks for Machine Learning

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-9-21 18:00 2025-1-20 17:30 155 886.49 MB 78
二维码链接
Neural Networks for Machine Learning的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 0101 Why do we need machine learning_.mp415.05MB
  2. 0102 What are neural networks_.mp49.76MB
  3. 0103 Some simple models of neurons.mp49.26MB
  4. 0104 A simple example of learning.mp46.57MB
  5. 0105 Three types of learning.mp48.96MB
  6. 0201 Types of neural network architectures.mp48.78MB
  7. 0202 Perceptrons_ The first generation of neural networks.mp49.78MB
  8. 0203 A geometrical view of perceptrons.mp47.32MB
  9. 0204 Why the learning works.mp45.9MB
  10. 0205 What perceptrons can_t do.mp416.57MB
  11. 0301 Learning the weights of a linear neuron.mp413.52MB
  12. 0302 The error surface for a linear neuron.mp45.89MB
  13. 0303 Learning the weights of a logistic output neuron.mp44.37MB
  14. 0304 The backpropagation algorithm.mp413.35MB
  15. 0305 Using the derivatives computed by backpropagation.mp411.15MB
  16. 0401 Learning to predict the next word.mp414.28MB
  17. 0402 A brief diversion into cognitive science.mp45.31MB
  18. 0403 Another diversion_ The softmax output function.mp48.03MB
  19. 0404 Neuro-probabilistic language models.mp48.93MB
  20. 0405 Ways to deal with the large number of possible outputs.mp414.26MB
  21. 0501 Why object recognition is difficult.mp45.37MB
  22. 0502 Achieving viewpoint invariance.mp46.89MB
  23. 0503 Convolutional nets for digit recognition.mp418.46MB
  24. 0504 Convolutional nets for object recognition.mp423.03MB
  25. 0601 Overview of mini-batch gradient descent.mp49.6MB
  26. 0602 A bag of tricks for mini-batch gradient descent.mp414.9MB
  27. 0603 The momentum method.mp49.74MB
  28. 0604 Adaptive learning rates for each connection.mp46.63MB
  29. 0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.mp415.12MB
  30. 0701 Modeling sequences_ A brief overview.mp420.13MB
  31. 0702 Training RNNs with back propagation.mp47.33MB
  32. 0703 A toy example of training an RNN.mp47.24MB
  33. 0704 Why it is difficult to train an RNN.mp48.89MB
  34. 0705 Long-term Short-term-memory.mp410.23MB
  35. 0801 A brief overview of Hessian Free optimization.mp416.24MB
  36. 0802 Modeling character strings with multiplicative connections.mp416.56MB
  37. 0803 Learning to predict the next character using HF.mp413.92MB
  38. 0804 Echo State Networks.mp411.28MB
  39. 0901 Overview of ways to improve generalization.mp413.57MB
  40. 0902 Limiting the size of the weights.mp47.36MB
  41. 0903 Using noise as a regularizer.mp48.48MB
  42. 0904 Introduction to the full Bayesian approach.mp412MB
  43. 0905 The Bayesian interpretation of weight decay.mp412.27MB
  44. 0906 MacKay_s quick and dirty method of setting weight costs.mp44.37MB
  45. 1001 Why it helps to combine models.mp415.12MB
  46. 1002 Mixtures of Experts.mp414.98MB
  47. 1003 The idea of full Bayesian learning.mp48.39MB
  48. 1004 Making full Bayesian learning practical.mp48.13MB
  49. 1005 Dropout.mp49.69MB
  50. 1101 Hopfield Nets.mp414.65MB
  51. 1102 Dealing with spurious minima.mp412.77MB
  52. 1103 Hopfield nets with hidden units.mp411.31MB
  53. 1104 Using stochastic units to improv search.mp411.76MB
  54. 1105 How a Boltzmann machine models data.mp413.28MB
  55. 1201 Boltzmann machine learning.mp414.03MB
  56. 1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.mp416.93MB
  57. 1203 Restricted Boltzmann Machines.mp412.68MB
  58. 1204 An example of RBM learning.mp48.71MB
  59. 1205 RBMs for collaborative filtering.mp49.53MB
  60. 1301 The ups and downs of back propagation.mp411.83MB
  61. 1302 Belief Nets.mp414.86MB
  62. 1303 Learning sigmoid belief nets.mp414.19MB
  63. 1304 The wake-sleep algorithm.mp415.68MB
  64. 1401 Learning layers of features by stacking RBMs.mp420.07MB
  65. 1402 Discriminative learning for DBNs.mp411.29MB
  66. 1403 What happens during discriminative fine-tuning_.mp410.17MB
  67. 1404 Modeling real-valued data with an RBM.mp411.2MB
  68. 1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.mp419.44MB
  69. 1501 From PCA to autoencoders.mp49.68MB
  70. 1502 Deep auto encoders.mp44.92MB
  71. 1503 Deep auto encoders for document retrieval.mp410.25MB
  72. 1504 Semantic Hashing.mp410.97MB
  73. 1505 Learning binary codes for image retrieval.mp411.51MB
  74. 1506 Shallow autoencoders for pre-training.mp48.25MB
  75. 1601 OPTIONAL_ Learning a joint model of images and captions.mp413.83MB
  76. 1602 OPTIONAL_ Hierarchical Coordinate Frames.mp411.16MB
  77. 1603 OPTIONAL_ Bayesian optimization of hyper-parameters.mp415.8MB
  78. 1604 OPTIONAL_ The fog of progress.mp42.78MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统