首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Data Analysis with Pandas and Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-11-4 09:34 2025-1-3 06:15 177 2.33 GB 174
二维码链接
[DesireCourse.Net] Udemy - Data Analysis with Pandas and Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Installation and Setup/1. Introduction to the Course.mp434MB
  2. 1. Installation and Setup/10. Windows - Install Anaconda Distribution.mp415.2MB
  3. 1. Installation and Setup/11. Windows - Access the Command Prompt and Update Anaconda Libraries.mp419.06MB
  4. 1. Installation and Setup/12. Windows - Unpack Course Materials + The Startdown and Shutdown Process.mp415.47MB
  5. 1. Installation and Setup/13. Intro to the Jupyter Notebook Interface.mp49.31MB
  6. 1. Installation and Setup/14. Cell Types and Cell Modes.mp411.68MB
  7. 1. Installation and Setup/15. Code Cell Execution.mp48.23MB
  8. 1. Installation and Setup/16. Popular Keyboard Shortcuts.mp46.27MB
  9. 1. Installation and Setup/17. Import Libraries into Jupyter Notebook.mp411.53MB
  10. 1. Installation and Setup/18. Python Crash Course, Part 1 - Data Types and Variables.mp411.99MB
  11. 1. Installation and Setup/19. Python Crash Course, Part 2 - Lists.mp49MB
  12. 1. Installation and Setup/2. About Me.mp421.3MB
  13. 1. Installation and Setup/20. Python Crash Course, Part 3 - Dictionaries.mp47.21MB
  14. 1. Installation and Setup/21. Python Crash Course, Part 4 - Operators.mp47.87MB
  15. 1. Installation and Setup/22. Python Crash Course, Part 5 - Functions.mp410.12MB
  16. 1. Installation and Setup/4. Mac OS - Download the Anaconda Distribution.mp47.92MB
  17. 1. Installation and Setup/5. Mac OS - Install Anaconda Distribution.mp418.06MB
  18. 1. Installation and Setup/6. Mac OS - Access the Terminal.mp46.36MB
  19. 1. Installation and Setup/7. Mac OS - Update Anaconda Libraries.mp435.27MB
  20. 1. Installation and Setup/8. Mac OS - Unpack Course Materials + The Startdown and Shutdown Process.mp422.15MB
  21. 1. Installation and Setup/9. Windows - Download the Anaconda Distribution.mp47.65MB
  22. 10. Working with Dates and Times/1. Intro to the Working with Dates and Times Module.mp46.32MB
  23. 10. Working with Dates and Times/10. Install pandas-datareader Library.mp45.9MB
  24. 10. Working with Dates and Times/11. Import Financial Data Set with pandas_datareader Library.mp425.48MB
  25. 10. Working with Dates and Times/12. Selecting Rows from a DataFrame with a DateTimeIndex.mp418.34MB
  26. 10. Working with Dates and Times/13. Timestamp Object Attributes.mp419.57MB
  27. 10. Working with Dates and Times/14. The .truncate() Method.mp49.04MB
  28. 10. Working with Dates and Times/15. pd.DateOffset Objects.mp425.58MB
  29. 10. Working with Dates and Times/16. More Fun with pd.DateOffset Objects.mp431.91MB
  30. 10. Working with Dates and Times/17. The pandas Timedelta Object.mp415.41MB
  31. 10. Working with Dates and Times/18. Timedeltas in a Dataset.mp419.55MB
  32. 10. Working with Dates and Times/2. Review of Python's datetime Module.mp416.73MB
  33. 10. Working with Dates and Times/3. The pandas Timestamp Object.mp412.8MB
  34. 10. Working with Dates and Times/4. The pandas DateTimeIndex Object.mp49.65MB
  35. 10. Working with Dates and Times/5. The pd.to_datetime() Method.mp422.88MB
  36. 10. Working with Dates and Times/6. Create Range of Dates with the pd.date_range() Method, Part 1.mp419.68MB
  37. 10. Working with Dates and Times/7. Create Range of Dates with the pd.date_range() Method, Part 2.mp418.54MB
  38. 10. Working with Dates and Times/8. Create Range of Dates with the pd.date_range() Method, Part 3.mp416.34MB
  39. 10. Working with Dates and Times/9. The .dt Accessor.mp413.68MB
  40. 11. Panels/10. Transpose a Panel with the .transpose() Method.mp415.74MB
  41. 11. Panels/11. The .swapaxes() Method.mp49.71MB
  42. 11. Panels/2. Intro to the Module + Fetch Panel Dataset from Google Finance.mp413.67MB
  43. 11. Panels/3. The Axes of a Panel Object.mp416.31MB
  44. 11. Panels/4. Panel Attributes.mp410.49MB
  45. 11. Panels/5. Use Bracket Notation to Extract a DataFrame from a Panel.mp48.25MB
  46. 11. Panels/6. Extracting with the .loc, .iloc, and .ix Methods.mp413.53MB
  47. 11. Panels/7. Convert Panel to a MultiIndex DataFrame (and Vice Versa).mp48.68MB
  48. 11. Panels/8. The .major_xs() Method.mp412.11MB
  49. 11. Panels/9. The .minor_xs() Method.mp413.62MB
  50. 12. Input and Output/1. Intro to the Input and Output Module.mp42.8MB
  51. 12. Input and Output/2. Feed pd.read_csv() Method a URL Argument.mp47.61MB
  52. 12. Input and Output/3. Quick Object Conversions.mp411.35MB
  53. 12. Input and Output/4. Export DataFrame to CSV File with the .to_csv() Method.mp411.36MB
  54. 12. Input and Output/5. Install xlrd and openpyxl Libraries to Read and Write Excel Files.mp45.99MB
  55. 12. Input and Output/6. Import Excel File into pandas.mp419.13MB
  56. 12. Input and Output/7. Export Excel File.mp417.8MB
  57. 13. Visualization/1. Intro to Visualization Module.mp47.31MB
  58. 13. Visualization/2. The .plot() Method.mp418.97MB
  59. 13. Visualization/3. Modifying Aesthetics with Templates.mp412.08MB
  60. 13. Visualization/4. Bar Graphs.mp412.27MB
  61. 13. Visualization/5. Pie Charts.mp49.88MB
  62. 13. Visualization/6. Histograms.mp412.16MB
  63. 14. Options and Settings/1. Introduction to the Options and Settings Module.mp43.32MB
  64. 14. Options and Settings/2. Changing pandas Options with Attributes and Dot Syntax.mp419.83MB
  65. 14. Options and Settings/3. Changing pandas Options with Methods.mp413.92MB
  66. 14. Options and Settings/4. The precision Option.mp46.11MB
  67. 15. Conclusion/1. Conclusion.mp42.95MB
  68. 2. Series/1. Create Jupyter Notebook for the Series Module.mp43.81MB
  69. 2. Series/10. More Series Attributes.mp411.66MB
  70. 2. Series/11. The .sort_values() Method.mp410.83MB
  71. 2. Series/12. The inplace Parameter.mp49.39MB
  72. 2. Series/13. The .sort_index() Method.mp48.57MB
  73. 2. Series/14. Python's in Keyword.mp47.3MB
  74. 2. Series/15. Extract Series Values by Index Position.mp48.9MB
  75. 2. Series/16. Extract Series Values by Index Label.mp413.73MB
  76. 2. Series/17. The .get() Method on a Series.mp49.56MB
  77. 2. Series/18. Math Methods on Series Objects.mp410.16MB
  78. 2. Series/19. The .idxmax() and .idxmin() Methods.mp45.75MB
  79. 2. Series/2. Create A Series Object from a Python List.mp418.12MB
  80. 2. Series/20. The .value_counts() Method.mp46.73MB
  81. 2. Series/21. The .apply() Method.mp412.32MB
  82. 2. Series/22. The .map() Method.mp413.09MB
  83. 2. Series/3. Create A Series Object from a Python Dictionary.mp45.19MB
  84. 2. Series/4. Intro to Attributes.mp412.85MB
  85. 2. Series/5. Intro to Methods.mp47.92MB
  86. 2. Series/6. Parameters and Arguments.mp418.29MB
  87. 2. Series/7. Import Series with the .read_csv() Method.mp421.14MB
  88. 2. Series/8. The .head() and .tail() Methods.mp46.47MB
  89. 2. Series/9. Python Built-In Functions.mp49.88MB
  90. 3. DataFrames I/1. Intro to DataFrames I Module.mp417.63MB
  91. 3. DataFrames I/10. Fill in Null Values with the .fillna() Method.mp410.75MB
  92. 3. DataFrames I/11. The .astype() Method.mp423.86MB
  93. 3. DataFrames I/12. Sort a DataFrame with the .sort_values() Method, Part I.mp413.27MB
  94. 3. DataFrames I/13. Sort a DataFrame with the .sort_values() Method, Part II.mp48.84MB
  95. 3. DataFrames I/14. Sort DataFrame with the .sort_index() Method.mp46.56MB
  96. 3. DataFrames I/15. Rank Values with the .rank() Method.mp413.17MB
  97. 3. DataFrames I/2. Shared Methods and Attributes between Series and DataFrames.mp415.62MB
  98. 3. DataFrames I/3. Differences between Shared Methods.mp413.11MB
  99. 3. DataFrames I/4. Select One Column from a DataFrame.mp414.87MB
  100. 3. DataFrames I/5. Select Two or More Columns from a DataFrame.mp49.93MB
  101. 3. DataFrames I/6. Add New Column to DataFrame.mp417.23MB
  102. 3. DataFrames I/7. Broadcasting Operations.mp418.23MB
  103. 3. DataFrames I/8. A Review of the .value_counts() Method.mp48.43MB
  104. 3. DataFrames I/9. Drop Rows with Null Values.mp419.2MB
  105. 4. DataFrames II/1. This Module's Dataset + Memory Optimization.mp424.45MB
  106. 4. DataFrames II/10. The .unique() and .nunique() Methods.mp48.19MB
  107. 4. DataFrames II/2. Filter a DataFrame Based on A Condition.mp427.4MB
  108. 4. DataFrames II/3. Filter with More than One Condition (AND - &).mp49.29MB
  109. 4. DataFrames II/4. Filter with More than One Condition (OR - ).mp416.75MB
  110. 4. DataFrames II/5. The .isin() Method.mp412.53MB
  111. 4. DataFrames II/6. The .isnull() and .notnull() Methods.mp412.26MB
  112. 4. DataFrames II/7. The .between() Method.mp416.76MB
  113. 4. DataFrames II/8. The .duplicated() Method.mp419.56MB
  114. 4. DataFrames II/9. The .drop_duplicates() Method.mp417.55MB
  115. 5. DataFrames III/1. Intro to the DataFrames III Module + Import Dataset.mp47.67MB
  116. 5. DataFrames III/10. Delete Rows or Columns from a DataFrame.mp416.22MB
  117. 5. DataFrames III/11. Create Random Sample with the .sample() Method.mp49.33MB
  118. 5. DataFrames III/12. The .nsmallest() and .nlargest() Methods.mp412.07MB
  119. 5. DataFrames III/13. Filtering with the .where() Method.mp413.56MB
  120. 5. DataFrames III/14. The .query() Method.mp419.93MB
  121. 5. DataFrames III/15. A Review of the .apply() Method on Single Columns.mp411.75MB
  122. 5. DataFrames III/16. The .apply() Method with Row Values.mp413.41MB
  123. 5. DataFrames III/17. The .copy() Method.mp415.44MB
  124. 5. DataFrames III/2. The .set_index() and .reset_index() Methods.mp413.19MB
  125. 5. DataFrames III/3. Retrieve Rows by Index Label with .loc[].mp425.87MB
  126. 5. DataFrames III/4. Retrieve Rows by Index Position with .iloc[].mp413.31MB
  127. 5. DataFrames III/5. The Catch-All .ix[] Method.mp418.56MB
  128. 5. DataFrames III/6. Second Arguments to .loc[], .iloc[], and .ix[] Methods.mp412.36MB
  129. 5. DataFrames III/7. Set New Values for a Specific Cell or Row.mp48.89MB
  130. 5. DataFrames III/8. Set Multiple Values in DataFrame.mp420.54MB
  131. 5. DataFrames III/9. Rename Index Labels or Columns in a DataFrame.mp413.39MB
  132. 6. Working with Text Data/1. Intro to the Working with Text Data Module.mp413.86MB
  133. 6. Working with Text Data/2. Common String Methods - lower, upper, title, and len.mp414.88MB
  134. 6. Working with Text Data/3. The .str.replace() Method.mp416MB
  135. 6. Working with Text Data/4. Filtering with String Methods.mp415.54MB
  136. 6. Working with Text Data/5. More String Methods - strip, lstrip, and rstrip.mp49.54MB
  137. 6. Working with Text Data/6. String Methods on Index and Columns.mp411.12MB
  138. 6. Working with Text Data/7. Split Strings by Characters with .str.split() Method.mp417.52MB
  139. 6. Working with Text Data/8. More Practice with Splits.mp411.92MB
  140. 6. Working with Text Data/9. The expand and n Parameters of the .str.split() Method.mp415.3MB
  141. 7. MultiIndex/1. Intro to the MultiIndex Module.mp48.32MB
  142. 7. MultiIndex/10. The .unstack() Method, Part 1.mp48.49MB
  143. 7. MultiIndex/11. The .unstack() Method, Part 2.mp414.54MB
  144. 7. MultiIndex/12. The .unstack() Method, Part 3.mp411.96MB
  145. 7. MultiIndex/13. The .pivot() Method.mp412.11MB
  146. 7. MultiIndex/14. The .pivot_table() Method.mp422.16MB
  147. 7. MultiIndex/15. The pd.melt() Method.mp417.26MB
  148. 7. MultiIndex/2. Create a MultiIndex with the set_index() Method.mp421.05MB
  149. 7. MultiIndex/3. The .get_level_values() Method.mp416.54MB
  150. 7. MultiIndex/4. The .set_names() Method.mp46.09MB
  151. 7. MultiIndex/5. The sort_index() Method.mp410.25MB
  152. 7. MultiIndex/6. Extract Rows from a MultiIndex DataFrame.mp417.34MB
  153. 7. MultiIndex/7. The .transpose() Method and MultiIndex on Column Level.mp411.92MB
  154. 7. MultiIndex/8. The .swaplevel() Method.mp45.18MB
  155. 7. MultiIndex/9. The .stack() Method.mp413.2MB
  156. 8. GroupBy/1. Intro to the Groupby Module.mp414.29MB
  157. 8. GroupBy/2. First Operations with groupby Object.mp423.08MB
  158. 8. GroupBy/3. Retrieve A Group with the .get_group() Method.mp410.14MB
  159. 8. GroupBy/4. Methods on the Groupby Object and DataFrame Columns.mp420.49MB
  160. 8. GroupBy/5. Grouping by Multiple Columns.mp410.34MB
  161. 8. GroupBy/6. The .agg() Method.mp413.18MB
  162. 8. GroupBy/7. Iterating through Groups.mp421.37MB
  163. 9. Merging, Joining, and Concatenating/1. Intro to the Merging, Joining, and Concatenating Module.mp411.46MB
  164. 9. Merging, Joining, and Concatenating/10. Merging by Indexes with the left_index and right_index Parameters.mp422.7MB
  165. 9. Merging, Joining, and Concatenating/11. The .join() Method.mp46.28MB
  166. 9. Merging, Joining, and Concatenating/12. The pd.merge() Method.mp46.84MB
  167. 9. Merging, Joining, and Concatenating/2. The pd.concat() Method, Part 1.mp412.56MB
  168. 9. Merging, Joining, and Concatenating/3. The pd.concat() Method, Part 2.mp413.2MB
  169. 9. Merging, Joining, and Concatenating/4. The .append() Method on a DataFrame.mp45.13MB
  170. 9. Merging, Joining, and Concatenating/5. Inner Joins, Part 1.mp417.92MB
  171. 9. Merging, Joining, and Concatenating/6. Inner Joins, Part 2.mp417.75MB
  172. 9. Merging, Joining, and Concatenating/7. Outer Joins.mp425.94MB
  173. 9. Merging, Joining, and Concatenating/8. Left Joins.mp420.99MB
  174. 9. Merging, Joining, and Concatenating/9. The left_on and right_on Parameters.mp420.24MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统