首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
GetFreeCourses.Co-Udemy-Master statistics & machine learning - intuition, math, code
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2022-1-6 18:50
2024-10-27 09:12
228
12.83 GB
221
磁力链接
magnet:?xt=urn:btih:16343a87ae284897e21e41a7bdff4cadf71feab1
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjE2MzQzYTg3YWUyODQ4OTdlMjFlNDFhN2JkZmY0Y2FkZjcxZmVhYjFaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GetFreeCourses
Co-Udemy-Master
statistics
&
machine
learning
-
intuition
math
code
文件列表
01 - Introductions/001 [Important] Getting the most out of this course.mp4
38.26MB
01 - Introductions/002 About using MATLAB or Python.mp4
27.11MB
01 - Introductions/003 Statistics guessing game_.mp4
48.39MB
01 - Introductions/004 Using the Q&A forum.mp4
24.36MB
01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player.mp4
7.06MB
02 - Math prerequisites/001 Should you memorize statistical formulas_.mp4
28MB
02 - Math prerequisites/002 Arithmetic and exponents.mp4
7.55MB
02 - Math prerequisites/003 Scientific notation.mp4
12.87MB
02 - Math prerequisites/004 Summation notation.mp4
7.73MB
02 - Math prerequisites/005 Absolute value.mp4
6.92MB
02 - Math prerequisites/006 Natural exponent and logarithm.mp4
12.18MB
02 - Math prerequisites/007 The logistic function.mp4
17.9MB
02 - Math prerequisites/008 Rank and tied-rank.mp4
12.92MB
03 - IMPORTANT_ Download course materials/001 Download materials for the entire course_.mp4
14.46MB
04 - What are (is_) data_/001 Is _data_ singular or plural_______.mp4
10.92MB
04 - What are (is_) data_/002 Where do data come from and what do they mean_.mp4
35.54MB
04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc.mp4
59.37MB
04 - What are (is_) data_/004 Code_ representing types of data on computers.mp4
47.83MB
04 - What are (is_) data_/005 Sample vs. population data.mp4
37.06MB
04 - What are (is_) data_/006 Samples, case reports, and anecdotes.mp4
17.79MB
04 - What are (is_) data_/007 The ethics of making up data.mp4
19.65MB
05 - Visualizing data/001 Bar plots.mp4
36.83MB
05 - Visualizing data/002 Code_ bar plots.mp4
100.03MB
05 - Visualizing data/003 Box-and-whisker plots.mp4
11.12MB
05 - Visualizing data/004 Code_ box plots.mp4
83.65MB
05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4
8.24MB
05 - Visualizing data/006 Histograms.mp4
43.73MB
05 - Visualizing data/007 Code_ histograms.mp4
133.49MB
05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion.mp4
11.79MB
05 - Visualizing data/009 Pie charts.mp4
16.53MB
05 - Visualizing data/010 Code_ pie charts.mp4
78.92MB
05 - Visualizing data/011 When to use lines instead of bars.mp4
17.98MB
05 - Visualizing data/012 Linear vs. logarithmic axis scaling.mp4
25.64MB
05 - Visualizing data/013 Code_ line plots.mp4
37.29MB
05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots.mp4
3.73MB
06 - Descriptive statistics/001 Descriptive vs. inferential statistics.mp4
21.48MB
06 - Descriptive statistics/002 Accuracy, precision, resolution.mp4
25.42MB
06 - Descriptive statistics/003 Data distributions.mp4
31.95MB
06 - Descriptive statistics/004 Code_ data from different distributions.mp4
303.11MB
06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions.mp4
10.18MB
06 - Descriptive statistics/006 The beauty and simplicity of Normal.mp4
10.23MB
06 - Descriptive statistics/007 Measures of central tendency (mean).mp4
38.7MB
06 - Descriptive statistics/008 Measures of central tendency (median, mode).mp4
34.26MB
06 - Descriptive statistics/009 Code_ computing central tendency.mp4
66.6MB
06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers.mp4
16.74MB
06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation).mp4
54.12MB
06 - Descriptive statistics/012 Code_ Computing dispersion.mp4
266.09MB
06 - Descriptive statistics/013 Interquartile range (IQR).mp4
9.84MB
06 - Descriptive statistics/014 Code_ IQR.mp4
83.39MB
06 - Descriptive statistics/015 QQ plots.mp4
16.22MB
06 - Descriptive statistics/016 Code_ QQ plots.mp4
90.3MB
06 - Descriptive statistics/017 Statistical _moments_.mp4
21.68MB
06 - Descriptive statistics/018 Histograms part 2_ Number of bins.mp4
23.5MB
06 - Descriptive statistics/019 Code_ Histogram bins.mp4
118.12MB
06 - Descriptive statistics/020 Violin plots.mp4
6.47MB
06 - Descriptive statistics/021 Code_ violin plots.mp4
104.96MB
06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots.mp4
17.32MB
06 - Descriptive statistics/023 Shannon entropy.mp4
33.05MB
06 - Descriptive statistics/024 Code_ entropy.mp4
96.76MB
06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins.mp4
8.25MB
07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO).mp4
11.55MB
07 - Data normalizations and outliers/002 Z-score standardization.mp4
36.23MB
07 - Data normalizations and outliers/003 Code_ z-score.mp4
66.77MB
07 - Data normalizations and outliers/004 Min-max scaling.mp4
11.73MB
07 - Data normalizations and outliers/005 Code_ min-max scaling.mp4
40.43MB
07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling.mp4
6.79MB
07 - Data normalizations and outliers/007 What are outliers and why are they dangerous_.mp4
43MB
07 - Data normalizations and outliers/008 Removing outliers_ z-score method.mp4
33.51MB
07 - Data normalizations and outliers/009 The modified z-score method.mp4
9.62MB
07 - Data normalizations and outliers/010 Code_ z-score for outlier removal.mp4
136.89MB
07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z.mp4
9.02MB
07 - Data normalizations and outliers/012 Multivariate outlier detection.mp4
25.05MB
07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal.mp4
43.72MB
07 - Data normalizations and outliers/014 Removing outliers by data trimming.mp4
16.9MB
07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers.mp4
65.29MB
07 - Data normalizations and outliers/016 Non-parametric solutions to outliers.mp4
22.96MB
07 - Data normalizations and outliers/017 Nonlinear data transformations.mp4
33.69MB
07 - Data normalizations and outliers/018 An outlier lecture on personal accountability.mp4
17.7MB
08 - Probability theory/001 What is probability_.mp4
41.11MB
08 - Probability theory/002 Probability vs. proportion.mp4
37.52MB
08 - Probability theory/003 Computing probabilities.mp4
37.52MB
08 - Probability theory/004 Code_ compute probabilities.mp4
148.4MB
08 - Probability theory/005 Probability and odds.mp4
12.01MB
08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space.mp4
5.92MB
08 - Probability theory/007 Probability mass vs. density.mp4
134.14MB
08 - Probability theory/008 Code_ compute probability mass functions.mp4
66.17MB
08 - Probability theory/009 Cumulative distribution functions.mp4
45.41MB
08 - Probability theory/010 Code_ cdfs and pdfs.mp4
95.94MB
08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions.mp4
9.31MB
08 - Probability theory/012 Creating sample estimate distributions.mp4
124.85MB
08 - Probability theory/013 Monte Carlo sampling.mp4
8.83MB
08 - Probability theory/014 Sampling variability, noise, and other annoyances.mp4
106.08MB
08 - Probability theory/015 Code_ sampling variability.mp4
154.75MB
08 - Probability theory/016 Expected value.mp4
59.63MB
08 - Probability theory/017 Conditional probability.mp4
85.68MB
08 - Probability theory/018 Code_ conditional probabilities.mp4
115.08MB
08 - Probability theory/019 Tree diagrams for conditional probabilities.mp4
13.5MB
08 - Probability theory/020 The Law of Large Numbers.mp4
40.55MB
08 - Probability theory/021 Code_ Law of Large Numbers in action.mp4
165.6MB
08 - Probability theory/022 The Central Limit Theorem.mp4
26.67MB
08 - Probability theory/023 Code_ the CLT in action.mp4
93.32MB
08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers.mp4
9.48MB
09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo.mp4
91.14MB
09 - Hypothesis testing/002 What is an hypothesis and how do you specify one_.mp4
49.12MB
09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses.mp4
43.75MB
09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations.mp4
106.47MB
09 - Hypothesis testing/005 P-z combinations that you should memorize.mp4
17.32MB
09 - Hypothesis testing/006 Degrees of freedom.mp4
32.9MB
09 - Hypothesis testing/007 Type 1 and Type 2 errors.mp4
45.9MB
09 - Hypothesis testing/008 Parametric vs. non-parametric tests.mp4
87.45MB
09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction.mp4
29.56MB
09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance.mp4
19.08MB
09 - Hypothesis testing/011 Cross-validation.mp4
28.25MB
09 - Hypothesis testing/012 Statistical significance vs. classification accuracy.mp4
42.5MB
10 - The t-test family/001 Purpose and interpretation of the t-test.mp4
32.16MB
10 - The t-test family/002 One-sample t-test.mp4
53.95MB
10 - The t-test family/003 Code_ One-sample t-test.mp4
157.96MB
10 - The t-test family/004 _Unsupervised learning__ The role of variance.mp4
28.65MB
10 - The t-test family/005 Two-samples t-test.mp4
93.81MB
10 - The t-test family/006 Code_ Two-samples t-test.mp4
211.35MB
10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test.mp4
16.77MB
10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test).mp4
25.98MB
10 - The t-test family/009 Code_ Signed-rank test.mp4
161.85MB
10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test).mp4
20.32MB
10 - The t-test family/011 Code_ Mann-Whitney U test.mp4
52.05MB
10 - The t-test family/012 Permutation testing for t-test significance.mp4
63.48MB
10 - The t-test family/013 Code_ permutation testing.mp4
240.9MB
10 - The t-test family/014 _Unsupervised learning__ How many permutations_.mp4
32.5MB
11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them_.mp4
29.83MB
11 - Confidence intervals on parameters/002 Computing confidence intervals via formula.mp4
17.33MB
11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula.mp4
94.29MB
11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling).mp4
54.27MB
11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals.mp4
136.71MB
11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance.mp4
8.54MB
11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals.mp4
18.6MB
12 - Correlation/001 Motivation and description of correlation.mp4
118.43MB
12 - Correlation/002 Covariance and correlation_ formulas.mp4
41.85MB
12 - Correlation/003 Code_ correlation coefficient.mp4
214.14MB
12 - Correlation/004 Code_ Simulate data with specified correlation.mp4
70.12MB
12 - Correlation/005 Correlation matrix.mp4
30.96MB
12 - Correlation/006 Code_ correlation matrix.mp4
282.48MB
12 - Correlation/007 _Unsupervised learning__ average correlation matrices.mp4
18.49MB
12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix.mp4
10.13MB
12 - Correlation/009 Partial correlation.mp4
59.34MB
12 - Correlation/010 Code_ partial correlation.mp4
108.27MB
12 - Correlation/011 The problem with Pearson.mp4
16.57MB
12 - Correlation/012 Nonparametric correlation_ Spearman rank.mp4
23.72MB
12 - Correlation/013 Fisher-Z transformation for correlations.mp4
28.48MB
12 - Correlation/014 Code_ Spearman correlation and Fisher-Z.mp4
42.71MB
12 - Correlation/015 _Unsupervised learning__ Spearman correlation.mp4
15.95MB
12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation.mp4
10.31MB
12 - Correlation/017 Kendall's correlation for ordinal data.mp4
30.15MB
12 - Correlation/018 Code_ Kendall correlation.mp4
184.22MB
12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4
14.95MB
12 - Correlation/020 The subgroups correlation paradox.mp4
21.57MB
12 - Correlation/021 Cosine similarity.mp4
14.2MB
12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation.mp4
102.19MB
13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1.mp4
137.72MB
13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2.mp4
84.25MB
13 - Analysis of Variance (ANOVA)/003 Sum of squares.mp4
45.88MB
13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table.mp4
19.9MB
13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons.mp4
63.36MB
13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA.mp4
104.39MB
13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example.mp4
44.32MB
13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples).mp4
172.72MB
13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA.mp4
73.1MB
13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example.mp4
35.95MB
13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA.mp4
114.16MB
14 - Regression/001 Introduction to GLM _ regression.mp4
61.97MB
14 - Regression/002 Least-squares solution to the GLM.mp4
41.41MB
14 - Regression/003 Evaluating regression models_ R2 and F.mp4
38.06MB
14 - Regression/004 Simple regression.mp4
36.77MB
14 - Regression/005 Code_ simple regression.mp4
52.29MB
14 - Regression/006 _Unsupervised learning__ Compute R2 and F.mp4
5.38MB
14 - Regression/007 Multiple regression.mp4
45.14MB
14 - Regression/008 Standardizing regression coefficients.mp4
75.19MB
14 - Regression/009 Code_ Multiple regression.mp4
170.95MB
14 - Regression/010 Polynomial regression models.mp4
48.15MB
14 - Regression/011 Code_ polynomial modeling.mp4
129.08MB
14 - Regression/012 _Unsupervised learning__ Polynomial design matrix.mp4
4.74MB
14 - Regression/013 Logistic regression.mp4
52.7MB
14 - Regression/014 Code_ Logistic regression.mp4
81.23MB
14 - Regression/015 Under- and over-fitting.mp4
120.86MB
14 - Regression/016 _Unsupervised learning__ Overfit data.mp4
4.82MB
14 - Regression/017 Comparing _nested_ models.mp4
39.07MB
14 - Regression/018 What to do about missing data.mp4
16.05MB
15 - Statistical power and sample sizes/001 What is statistical power and why is it important_.mp4
39.53MB
15 - Statistical power and sample sizes/002 Estimating statistical power and sample size.mp4
36.16MB
15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power.mp4
31.2MB
16 - Clustering and dimension-reduction/001 K-means clustering.mp4
54.29MB
16 - Clustering and dimension-reduction/002 Code_ k-means clustering.mp4
230.34MB
16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization.mp4
12.91MB
16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur.mp4
7.94MB
16 - Clustering and dimension-reduction/005 Clustering via dbscan.mp4
100.3MB
16 - Clustering and dimension-reduction/006 Code_ dbscan.mp4
288.12MB
16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means.mp4
19.94MB
16 - Clustering and dimension-reduction/008 K-nearest neighbor classification.mp4
12.47MB
16 - Clustering and dimension-reduction/009 Code_ KNN.mp4
108.34MB
16 - Clustering and dimension-reduction/010 Principal components analysis (PCA).mp4
42.56MB
16 - Clustering and dimension-reduction/011 Code_ PCA.mp4
175.1MB
16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data.mp4
11.52MB
16 - Clustering and dimension-reduction/013 Independent components analysis (ICA).mp4
45.52MB
16 - Clustering and dimension-reduction/014 Code_ ICA.mp4
73.36MB
17 - Signal detection theory/001 The two perspectives of the world.mp4
13.91MB
17 - Signal detection theory/002 d-prime.mp4
34.14MB
17 - Signal detection theory/003 Code_ d-prime.mp4
69.5MB
17 - Signal detection theory/004 Response bias.mp4
21.82MB
17 - Signal detection theory/005 Code_ Response bias.mp4
22.81MB
17 - Signal detection theory/006 F-score.mp4
107.25MB
17 - Signal detection theory/007 Receiver operating characteristics (ROC).mp4
64.37MB
17 - Signal detection theory/008 Code_ ROC curves.mp4
54.62MB
17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer_.mp4
11.5MB
18 - A real-world data journey/002 Introduction.mp4
53.02MB
18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data.mp4
201.29MB
18 - A real-world data journey/004 MATLAB_ Import the divorce data.mp4
96.29MB
18 - A real-world data journey/005 MATLAB_ More data visualizations.mp4
34.32MB
18 - A real-world data journey/006 MATLAB_ Inferential statistics.mp4
113.52MB
18 - A real-world data journey/007 Python_ Import and clean the marriage data.mp4
249.82MB
18 - A real-world data journey/008 Python_ Import the divorce data.mp4
137.14MB
18 - A real-world data journey/009 Python_ Inferential statistics.mp4
115.54MB
18 - A real-world data journey/010 Take-home messages.mp4
43.8MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统